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Abstract

Barcode Deblurring is a tool that will become more and more im-
portant as smaller and cheaper cameras become the norm amongst the
average person. Developing an efficient non-blind deconvolution of a bar-
code using the box constraint and extensions of it is the primary focus in
our research. We experiment with slightly different methods to numeri-
cally estimate a barcode with gradient projection from an initial blurry
image. The methods involve adding additional constraints based on the
structure of a barcode, thresholding, or an adaptive constraint that at-
tempts to make educated guesses about what the barcode should be at
certain sections during the solution process. We see improvements in our
solution for varying amounts of noise and blur when implementing these
additional constraints based on our knowledge of a barcode.

1 Introduction

Barcodes are on nearly every product sold in stores. Having an improved, more
accurate way than current methods to deblur barcodes from images will make
it easier to use images rather than typical laser scanners to read barcodes.

1.1 Barcodes

The standard UPC-A 1D barcode which we examine is made up of a few impor-
tant aspects. First, it is a binary signal of black and white modules that encode
12 digits related to the product. Each digit is represented by 7 modules of the
signal, making a total of 84 modules. However, a real barcode has 95 module
in total. The extra 11 come from 3 modules in the beginning, 5 modules in the
middle, and 3 modules in the end that is part of the structure of every UPC-A
1D barcode.



1.2 Images versus Laser Scanners

Because of the nature of images, there is a higher likelihood of blur and noise.
While most commercial applications currently effectively implement laser scan-
ners, the prevalence of cameras in the hands of consumers makes it reasonable
to examine an effective way of deblurring and reconstructing barcodes from im-
ages. Images also have the advantage of being able to contain multiple barcodes
in a single image. This could allow batch barcode reading for some commercial
applications such as inventory management or distribution versus laser scanning
products one by one.

1.3 Method and Experimentation

The primary method we implement to deblur barcodes is gradient projection.
We used MATLAB as our primary program. Because of this iterative process,
we have the benefit of including several constraints, namely the Box Constraint,
and other factors to optimize the estimation of barcodes given various amounts
of noise and blur. We attempt to find effective parameters that would best
estimate the original barcode.

2 Model and Method

We examine the non-blind deconvolution of barcodes, which means the blurring
kernel, explained below, is known.

2.1 Model

First, it is important to have a model of what might happen to an image that
is blurred and contains noise. The model used is as follows:

f=Gpxu+n

In the model, f is the resulting signal after adding noise n to G} convoluted
with u, where Gy, is the blurring kernel (typically Gaussian), k is the standard
deviation of the kernel, and u is the original barcode signal [3].

2.2 Objective

The next step after modelling the barcode is to find the best solution given a
known Gy and an unknown u. Given the nature of a convolution, a typical
equation can be rewritten from f % g to F' X g where F' is a matrix that defines
either the linear or circular convolution (depending on implementation/method)
of f and g. Having the relationship between the blur kernel and the original
barcode be a linear transformation means it is possible to use linear methods
to try and find the best solution. In this case, the method used is minimization
of this equation:
min | Az — b + |



where A is the matrix representation of convoluting Gy with u, = is u, b is the
signal f pulled from an image, and A is a given constant that will help minimize
the effect of noise on the blurred barcode signal.

Solving this problem however will not be guaranteed if  can only be 0 or 1
as in a real binary signal. Changing the conditions to be convex by allowing x
to be between 0 and 1 guarantees that there is a minimum and that numerical
methods, given the right conditions, will yield an answer. This condition is also
known as a Box Constraint.

2.3 Method

Since the minimization of our objective equation (quadratic) and the set we
are minimizing over are both convex, we can now use the Gradient Projection
method to not just approach a minimum, but a global minimum. Finding the
gradient of our main equation yields us:

AT(Azx —b) + M
The method itself follows the recursive relation:
Tpt1 = Tp — dt X (VF)

where VF' is the gradient of the equation we are minimizing and dt is the time
step determining how fast we approach the minimum. Substituting yields:

Tpi1 = xp — dt x (AT (Az — b) + Az)

2.3.1 The Fast Fourier Transformation

Because multiplying by large matrices is computationally expensive, we speed
up our method using the Fast Fourier Transformation (FFT). With FFT, a
convolution f * g in the fourier domain is equivalent to F(f x g) = F(f) e F(g)
where F' represents the transformation into the fourier domain. With this,
fxg=F Y F(fxg)) =F YF(f) e F(g)) where F~! represents the inverse
transformation out of the fourier domain.

3 Various Constraints

3.1 Thresholding

A very basic constraint that we can apply during the solution process is thresh-
olding, where we push values that get close to the boundary all the way to the
boundary. Since we know that we’re working with a binary signal, it would
make sense that values that get very close to being 0 or 1 will, with a high
amount of certainty, actually be that value. With this,values will tend even
more to the extremes, hopefully revealing a better barcode-like structure



3.2 Adaptive

Another constraint we can apply is an adaptive constraint. The idea behind
this comes from wanting a solution that will be as close to the boundaries as
possible, but having a greater amount of control that simple thresholding. What
this constraint does is it guesses, based on a pre-set distance from the boundary,
each module of the barcode for all 95 modules. This guess is then saved and
the program moves onto the next iteration.

This constraint should cause good guesses to stay around the boundary or
not change very much, whereas bad guesses would move away from the boundary
it was pushed near and eventually would be removed as a guess from the list of
guesses.

3.3 Barcode Structure

As mentioned at the beginning of the paper, each barcode has certain features
that are the same for every barcode. If the beginning and end of a barcode
are properly detected, then it is easily possible to add the addition constraints
every barcode has. Note: W stands for W and B stands for black. First, the
beginning and end both have a 3 module wide combination of BWB. Second,
the middle has a 5 module wide combination of WBWBW. Finally, there is
also two patterns also associated with barcodes: one for the first 6 digits and
one for the last 6 digits. The first 6 digits all start with a W module and end
with a B module, while the last 6 digits have the opposite pattern where they
start with B and end with W.

4 Parameter Experimentation

To see which parameters would best estimate a barcode, we fix the standard
deviation of the noise at 0.1 and the blur at 1. The noise is uniformly distributed
with a mean of 0. The blur with standard deviation of 1 means approximately
the size of two modules is how wide the blurring kernel weights the values.

Now, varying the three parameters A, dt, and Precision, where Precision
is the value determining when to stop iterating gradient projection, we can
see what value gives the lowest error. The equation that defines Precision is
[0t = znll/[l2nl]-

At the end of the paper will be 8 figures with example values we experimented
with. For the black plot, that shows us what our ”solution” looks like after our
gradient projection method and Box Constraint. For the blue/red plot, the
more blue and the less red means a higher error. On the other hand, the more
red and the less blue, the lower the error. Now, we will explain here what each
figure means.

In figure 1, we set A to 1. Because this is our regularization term to reduce
the effect of noise, setting it too high in this case gives us a shorter, smooth-
looking graph and a very high error.



In figure 2, we set A to 0.1. Because this is still fairly high, the noise is
mostly eliminated from the plot but still gives a decent amount of error.

In figure 3, we set A to 0.0001. Because this value is so much lower, it only
somewhat reduces the noise but gives a much better barcode-looking solution
and a low amount of error.

In figure 4, we set dt to 3. Because this step size is too high, the solution
blows up and gives us something that looks nothing like a barcode.

In figure 5, we set dt to 1. Because this is much more reasonable, we get a
decent solution that we can reconstruct a barcode from. Figure 6 gives only a
slightly different solution.

In figure 7 and figure 8, we set Precision to 0.00001 and 0.0000001. Because
both of these are quite small, there is little difference between them. Both
values, though, give good approximations of our final barcode. From further
experiments, this value should be set depending on the standard deviation of
the blur and the step size.

From the analysis of the tested values, we decided that setting A to 0.001,
dt to 1, and Precision to 0.00001 were optimal parameters in most situations.

5 Error Analysis

With optimal parameters selected, we moved on to error analysis to test the dif-
ferent constraints examined earlier. In the colored plots at the end of the paper,
we plotted the error between the real barcode and the ”solved” barcode where
the axes are the standard deviation of the noise versus the standard deviation
of the blur. The error is calculated by: ||RealBarcode — Solved Barcodel|?.

In figure 9 and 10, we see only minor differences in error. There was not much
improvement using thresholding over the gradient projection method itself.

In figure 11, there was a significant reduction in error, especially for low
amounts of blur. This indicates that it might be possible, with more complex
constraints, to counter higher amounts of noise and blur.

In figure 12, we see the best overall reduction in error compared to the
other three plots. It nearly halved the maximum error compared to the other
methods. This is a powerful constraint because it reduces from 95 unknowns to
64, an over 30% decrease.
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6.1 Related Work

The 2012 iCAMP Barcode group’s paper was helpful in getting up to speed on
the gradient projection method we implemented [1]. Our advisor and mentor
also co-authored an interesting paper using polynomial approximation and other
techniques [2].

7 Conclusion

Using gradient projection is a strong first step at deblurring a barcode using
our model, but it is possible to strengthen the conditions and constraints to
better adhere to the binary behavior of a barcode for a better reconstruction of
a blurry and noisy barcode. We are optimistic of the potential of our constraints
and seek to lay out the foundation of future work to be done below.

7.1 Future Work

A finer grained analysis of parameters and errors would be ideal to improve the
method that much more.

A strong contender for future examination is our adaptive constraint. Un-
fortunately, guessing wrong appears to hurt our final solution and we would like
to deal with wrong guesses more effectively.

Next, we would look to combine the constraints into one. Namely, combin-
ing the barcode structure constraint with the adaptive constraint should vastly
improve the estimation of the barcode.

We also want to look at a pre-pass filter to reduce the amount of noise
while preserving our signal as much as possible. This will increase the signal-
to-noise ratio of our blurry data and hopefully give us a better estimate of the
barcode. Specifically, we were looking at the Savitzky-Golay smoothing filter
(conveniently built-in to MATLAB).

Another idea we were thinking about is a final-pass dictionary minimization.
This minimization would involve comparing our solved barcode with the real
digits that are encoded in a barcode. The digit that gave the least error would
be the one selected for each section.

Finally, an interesting idea is a multi-pass solution that changes the values
of the box constraint itself. The idea is that instead of allowing x to be from 0
to 1, change it to be from 0 to 0.2, 0.8 to 1, 0 to 0.3, 0.7 to 1, etc. with the idea
that it might be possible to iteratively solve for the barcode.

The first pass with the new constraint from 0 to 0.2 would be able to give
all the places in the barcode that are definitely 0 and caused by large sections
with 0 values. A second pass with a different constraint from 0.8 to 1 would
then give all the places are the definitely 1 and caused by large section with
1 values. Then the third pass would have a different constraint from 0 to 0.3
and would give more sections of the barcode that are 0 with a high probability.
Each pass would provide information to the next and would help better define
a real barcode.



This would continue and would hopefully give all the sections of the barcode
that are either definitely or highly likely to be 0 or 1. Once all the passes are
done, the final pass would run with the normal box constraint along with any
other constraints and attempt to solve the intermediate values that were difficult
to discern.
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Figure 2: A =0.1
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Figure 3: A = 0.0001
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Figure 4: dt =3
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Figure 12: Barcode Structure
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