Algebra Qualifying Exam: Fall 2017 September 20, 2017

Instructions: JUSTIFY YOUR ANSWERS. LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators. As usual, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the ring of integers, the field of rational numbers, the field of real numbers and the field of complex numbers respectively, \mathbb{F}_q denotes a finite field with q elements, $M_n(R)$ denotes the ring of $n \times n$ matrices over a ring R, and $GL_n(R)$ denotes the group of invertible matrices in $M_n(R)$.

- 1. (10 points) Suppose $A \in M_3(\mathbb{C})$ has eigenvalues -1 and 2 (and no other eigenvalues). Let $c_A(x) \in \mathbb{C}[x]$ denote the characteristic polynomial of A, and $m_A(x) \in \mathbb{C}[x]$ the minimal polynomial. Which pairs $(c_A(x), m_A(x))$ can occur? For each pair that can occur, give an explicit example of a matrix A with those characteristic and minimal polynomials.
- 2. (10 points) Prove that no group of order 150 is simple.
- 3. (10 points) Suppose G is an abelian group, and H_1 , H_2 are subgroups. Either prove the following statement, or find a counterexample:

If
$$G/H_1 \cong G/H_2$$
, then $H_1 \cong H_2$.

- 4. (10 points) Determine up to isomorphism all $\mathbb{F}_2[x]$ -modules of order 4.
- 5. (10 points) Suppose that K is a field of characteristic 0, and L is the splitting field of the irreducible polynomial $f(x) \in K[x]$. Prove that if Gal(L/K) is abelian, and if $a \in L$ is a root of f, then L = K(a).
- 6. (10 points)
 - (a) Let $f(x) = x^{31} 1 \in \mathbb{F}_2[x]$. What is Gal(f)?
 - (b) Let $f(x) = x^{31} 1 \in \mathbb{F}_5[x]$. What is Gal(f)?
- 7. (10 points) Which of the following ideals of $\mathbb{Z}[x,y]$ are prime? Which are maximal? Justify your answer.

$$(x,y)$$
, $(x,3y)$, (x^2+1,y) , $(x^2+1,3,y)$, $(x^2+1,5,y)$.

- 8. (10 points) If N is a finite normal subgroup of a group G, $d \in \mathbb{Z}_{>0}$, and G/N has an element of order d, then so does G.
- 9. (20 points) Indicate whether each of the following statements is True or False, and give a brief justification.
 - (a) Every commutative ring with identity, with exactly 200 elements, has zero divisors.
 - (b) For every prime p there is a nonzero homomorphism from $\mathbb{Z}[i]$ to \mathbb{F}_p .
 - (c) The center of a non-abelian group G is always properly contained in some abelian subgroup.
 - (d) If K is a subfield of F and F is isomorphic to K as fields, then F = K.
 - (e) For every integral domain R and every R-module M, the set of torsion elements is a sub-module. (We say $m \in M$ is a torsion element if there is a nonzero $r \in R$ such that rm = 0.)