Analysis Comprehensive Exam

June 19, 2020 (Friday)

Math Exam ID: _____

SCORES:

Total: _____ /80

Math Exam ID:_____

Problem 1: Let $E \subset \mathbb{R}$ be uncountable. Prove that E has uncountably many limit points.

Math Exam ID:_____

Problem 2: Suppose that X is a metric space and $K \subseteq X$ is compact. Prove that there are $a, b \in K$ that are "as far apart as possible," that is, $d(x, y) \leq d(a, b)$ for all $x, y \in K$.

Problem 3: Let I(x) = 1 if $x \ge 0$ and I(x) = 0 if x < 0. Let

$$\alpha(x) := \sum_{n=1}^{\infty} 2^{-n} I(x - 2^{-n}).$$

Compute the Riemann–Stieltjes integral $\int_0^1 x \, d\alpha.$

Problem 4: Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Prove that there is $\theta \in (a, b)$ such that

 $(f(b) - f(a))g'(\theta) = (g(b) - g(a))f'(\theta).$

Math Exam ID:___

Problem 5: Let $\{f_n\}$ be a bounded sequence of convex functions on [-2, 2]. Show that there is a subsequence $\{f_{n_k}\}$ that converges uniformly on [-1, 1]. (Recall that a function f is convex on an interval I if for all $0 \le \lambda \le 1$ and all $x, y \in I$, one has $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$.)

Problem 6: Let X denote the set of non-decreasing functions $f : [0, 1] \to [0, 1]$. By *non-decreasing*, we mean that $x \leq y$ implies that $f(x) \leq f(y)$. We equip X with the metric: $d(f,g) = \sup\{|f(x) - g(x)|; x \in [0, 1]\}.$

- a). Prove that (X, d) is complete.
- b). Prove that (X, d) is not compact.

Problem 7: Let $B_R(\mathbf{0}) = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 \leq R^2\}$ be the ball of radius R in the *n*-dimensional Euclidean space. Compute the volume of $B_R(\mathbf{0})$.

Problem 8: For any bounded real-valued function $u \in \mathcal{R}([a, b])$ (Riemann integrable), we define the so-called L^2 -norm of u:

$$||u||_2 = \left(\int_a^b |u(x)|^2 dx\right)^{1/2}.$$

Prove that

a). If $f,g \in \mathcal{R}([a,b])$, then

$$\left| \int_{a}^{b} f \cdot g dx \right| \leq ||f||_{2} \cdot ||g||_{2}.$$

b). If $f, g, h \in \mathcal{R}([a, b])$, then

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2.$$