Print Your Examination number:

Complex Qualifying Examination
June, 2021

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 — / 10$
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 \longrightarrow / 10$
Problem $7 \longrightarrow / 10$
Problem $8 \longrightarrow / 10$
Problem $9 — / 10$

Total $\quad / 90$

Notation: Let $D\left(z_{0}, r\right)$ be the disk centered at z_{0} and radius r in the complex plane \mathbf{C}, let $U=\{z \in \mathbf{C}: \mathbf{I m} \mathbf{z}>\mathbf{0}\}$ be the upper half plane.

1. Show that for any integer $n \geq 2$

$$
\int_{0}^{\infty} \frac{1}{1+x^{n}} d x=\frac{\pi}{\sin \left(\frac{\pi}{n}\right)}
$$

2. Let f be holomorphic in $D(0,2)$ and continuous on $\overline{D(0,2)}$. If $|f(z)|$ is a constant on the boundary of $D(0,2)$ then f is either a constant or has finite many zeros in $D(0,2)$.
3. Define the Bernoulli numbers B_{n} by the power series

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}
$$

(i) Prove that $B_{0}=1$ and

$$
\sum_{k=0}^{n-1} \frac{B_{k}}{(n-k)!k!}=0, \quad \text { for any } n>1
$$

(ii) Find B_{1}, B_{2}, B_{3} and B_{4}.
4. Let

$$
F(z)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} z^{2^{n}}
$$

Prove the following two statements:
(i) F is holomorphic in $D(0,1)$ and continuous on $\overline{D(0,1)}$;
(ii) Every point of $\partial D(0,1)$ is singular point for f.
5. Let D be a bounded domain in \mathbf{C} with C^{1} boundary and $0 \in D$. Prove or disprove there are a sequence polynomials $\left\{p_{n}\right\}_{n=1}^{\infty}$ such that $p_{n}(z) \rightarrow \frac{1}{z^{2}}$ as $n \rightarrow \infty$ uniformly on ∂D.
6. Let u be harmonic in $D(0,1) \backslash\{0\}$ satisfying

$$
\lim _{z \rightarrow 0} \frac{u(z)}{\log |z|}=0
$$

Prove that u is harmonic in $D(0,1)$.
7. Prove that

$$
(3-e)|z|<\left|e^{z}-1\right|<(e-1)|z|, \quad \text { for any } z \in D(0,1) \backslash\{0\}
$$

8. Suppose that f is holomorphic in $D(0,1) \backslash\{0\}$ such that

$$
f\left(\frac{1}{n}\right)=\frac{(-1)^{n}}{n}, \quad \text { for all positive integers } n
$$

Prove that $\lim _{n \rightarrow \infty}|f(z)|$ does not exist.
9. Prove that all zeros of the polynomial

$$
p_{n}(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

lie in the disk $D(0, R)$, where

$$
R=1+\max \left\{\left|a_{j}\right|: 1 \leq j \leq n\right\} .
$$

