Print Your Examination number:

Complex Qualifying Examination June, 2021

Table of your scores

Problem 1 — / 10
Problem 2 ——/ 10
Problem 3 ———/ 10
Problem 4 ———/ 10
Problem 5 ———/ 10
Problem 6 ———/ 10
Problem 7 ———/ 10
Problem 8 ———/ 10
Problem 9 ———/ 10

Notation: Let $D(z_0, r)$ be the disk centered at z_0 and radius r in the complex plane **C**, let $U = \{z \in \mathbf{C} : \mathbf{Im} \ \mathbf{z} > \mathbf{0}\}$ be the upper half plane.

1. Show that for any integer $n \ge 2$

$$\int_0^\infty \frac{1}{1+x^n} dx = \frac{\pi}{\sin(\frac{\pi}{n})}.$$

2. Let f be holomorphic in D(0,2) and continuous on D(0,2). If |f(z)| is a constant on the boundary of D(0,2) then f is either a constant or has finite many zeros in D(0,2).

3. Define the Bernoulli numbers B_n by the power series

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n$$

(i) Prove that $B_0 = 1$ and

$$\sum_{k=0}^{n-1} \frac{B_k}{(n-k)!k!} = 0, \quad \text{for any } n > 1.$$

(ii) Find B_1, B_2, B_3 and B_4 .

4. Let

$$F(z) = \sum_{n=0}^{\infty} \frac{1}{2^n} z^{2^n}.$$

Prove the following two statements:

(i) F is holomorphic in D(0, 1) and continuous on D(0, 1);

(ii) Every point of $\partial D(0, 1)$ is singular point for f.

5. Let *D* be a bounded domain in **C** with C^1 boundary and $0 \in D$. Prove or disprove there are a sequence polynomials $\{p_n\}_{n=1}^{\infty}$ such that $p_n(z) \to \frac{1}{z^2}$ as $n \to \infty$ uniformly on ∂D .

6. Let u be harmonic in $D(0,1) \setminus \{0\}$ satisfying

$$\lim_{z \to 0} \frac{u(z)}{\log |z|} = 0.$$

Prove that u is harmonic in D(0, 1).

7. Prove that

$$(3-e)|z| < |e^z - 1| < (e-1)|z|$$
, for any $z \in D(0,1) \setminus \{0\}$.

8. Suppose that f is holomorphic in $D(0,1) \setminus \{0\}$ such that

$$f(\frac{1}{n}) = \frac{(-1)^n}{n}$$
, for all positive integers n .

Prove that $\lim_{n\to\infty} |f(z)|$ does not exist.

9. Prove that all zeros of the polynomial

$$p_n(z) = z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$$

lie in the disk D(0, R), where

$$R = 1 + \max\{|a_j| : 1 \le j \le n\}.$$