Print Your Examination number:

Complex Qualifying Examination
January 4, 2022

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 — / 10$
Problem $4 \longrightarrow / 10$
Problem $5 — / 10$
Problem $6 \longrightarrow / 10$
Problem $7 \longrightarrow / 10$
Problem $8 \longrightarrow / 10$
Problem $9 — / 10$

Total $\quad / 90$

1. Let $P(z)=z^{n}+a_{1} z^{n-1}+\ldots+a_{n}$. Show that either $P(z)=z^{n}$ identically, or there exists a point $z_{0} \in \mathbf{C},\left|z_{0}\right|=1$, such that $\left|P\left(z_{0}\right)\right|>1$.
2. Find the number of roots of the equation $z^{4}+z^{3}-4 z+1=0$ in the domain $\{z \in \mathbf{C}: 1<|z|<2\}$. Roots are counted as many times as its multiplicity.
3. Find a conformal map φ, mapping the domain $\{z \in \mathbf{C}:|\arg (z)|<\pi / 4\}$ onto the unit disk $\{z \in \mathbf{C}:|z|<1\}$ with properties $\varphi(1)=0$ and $\arg \varphi^{\prime}(1)=$ π.
4. Evaluate the following integral

$$
\int_{\partial D(0,2)} \frac{1}{z^{n}(1-z)} d z \quad \text { for all } n=0,1,2, \cdots
$$

where $D(0,2) \subset \mathbf{C}$ is the disc centered at 0 with radius 2 .
5. (a) Classify the singularities of the function

$$
f(z)=\frac{z}{\sin z}
$$

Include the point at infinity.
(b) Find a Laurent expansion, valid in the region $|z+1|>3$, for

$$
f(z)=\frac{7 z-2}{z^{3}-z^{2}-2 z}
$$

Find the residue of f at $z=0$.
6. Let f be holomorphic in \mathbf{C} with

$$
|f(z)| \geq|z|^{5}, \quad \text { for }|z|>1
$$

Prove or disprove that f is a polynomial.
7. (a) Prove that all points on $\partial D(0,1)$ are singular points of the function

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \frac{n}{4^{n}} z^{2^{n}} \tag{1}
\end{equation*}
$$

(b) Prove that f defined by (1) is differentiable function on $\bar{D}(0,1)$.
8. Let f be holomorphic in $D(0,1)$ with $f(0)=f^{\prime}(0)=0$. Prove that the series

$$
\sum_{n=2}^{\infty} f\left(\frac{1}{\sqrt{n} \log (n+1)}\right)
$$

converges.
9. Let $f: D(0,1) \backslash\{0\}$ be a holomorphic with

$$
\int_{D(0,1)}|f(z)|^{3 / 2} d A(z)=1
$$

Prove that $z=0$ is a pole of order 1 or a removable singularity of the function f.

