Print Your Examination number: $\qquad$

Complex Qualifying Examination
1:00pm-3:30pm, September 20, 2023 at RH 306

Table of your scores

Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 \longrightarrow / 10$
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 —$ / 10
Problem $7 \longrightarrow / 10$
Problem $8 \longrightarrow / 10$

Total $\quad / 80$

Notation. Let $D(a, r)$ denote the disc in the complex plane $\mathbf{C}$ centered at $a$ with radius $r$ and $\partial D(a, r)=\{z \in \mathbf{C}:|\mathbf{z}-\mathbf{a}|=\mathbf{r}\}$. Let $\mathbf{R}$ denote the set of all real numbers. Let $\mathbf{H}=\{z \in \mathbf{C}: \operatorname{Im} z>0\}$ be the upper half plane.

Problem 1: Find the line integral:

$$
\int_{\gamma} z \sin z d z
$$

where $\gamma$ the curve from -1 to 1 taken along a semicircle.

Problem 2: A domain $\Omega$ in $\mathbf{C}$ is said to be holomorphic simply connected if for any holomorphic function $f$ on $\Omega$ and any simple closed piecewise $C^{1}$ curve $\gamma$ in $\Omega$, one has $\int_{\gamma} f(z) d z=0$.
(a) Prove that

$$
\Omega=\{z=x+i y \in \mathbf{C}: y>x\}
$$

is holomorphic simply connected.
(b) Prove that $\Omega=D(0,1) \backslash\{0\}$ is not holomorphic simply connected.

## Problem 3:

a) Prove that the series $\sum_{n=0}^{\infty} e^{n(1+i) z}$ converges to a holomorphic function in a neighborhood of the point $z_{0}=i$.
b) If $f(z)=\sum_{n=0}^{\infty} e^{n(1+i) z}$ is represented as a power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(z-i)^{n},
$$

what is its radius of convergence?

Problem 4: Find an explicit conformal mapping of the domain

$$
U=\{z \in \mathbf{C}:|z-i|<\sqrt{2} \text { and }|z+i|<\sqrt{2}\}
$$

onto the unit disc.

Problem 5: If $f: \mathbf{C} \rightarrow \mathbf{C}$ is an entire function, one can define a sequence of functions $\left\{f^{(n)}\right\}$ by

$$
f^{(1)}=f, f^{(2)}=f \circ f, f^{(3)}=f \circ f \circ f, \ldots, f^{(n)}=f^{(n-1)} \circ f, \ldots
$$

Prove or disprove: For any entire function $f: \mathbf{C} \rightarrow \mathbf{C}$, the sequence $\left\{\left.f^{(n)}\right|_{D(0,1)}\right\}$ of restrictions of $f^{(n)}$ to the unit disc form a normal family.

## Problem 6:

a) Suppose that $u: \mathbf{C} \rightarrow \mathbf{R}$ is a harmonic function such that $\left.u\right|_{\mathbf{R}}=0$. Does it imply that $u \equiv 0$ ?
b) Suppose that $u: \mathbf{C} \rightarrow \mathbf{R}$ is a harmonic function such that $\left.u\right|_{\partial D(0,1)}=0$. Does it imply that $u \equiv 0$ ?

Problem 7: Let $f$ be entire holomorphic such that

$$
|f(z)|^{2}=p_{n}(x, y), \quad z=x+i y
$$

where $p_{n}(x, y)$ is a polynomial of $x$ and $y$ of degree $n$. Prove that $f$ is a polynomial of $z$.

Problem 8: Let $f$ be holomorphic in $D=D(0,1) \backslash\{0\}$ such that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta \leq 1, \text { for all } 0<r<1
$$

Prove that $z=0$ is a removable singularity.

