Print Your Examination number: ____________

Complex Qualifying Examination
1:00pm–3:30pm, September 20, 2023 at RH 306

Table of your scores

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score / 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td></td>
</tr>
<tr>
<td>Problem 4</td>
<td></td>
</tr>
<tr>
<td>Problem 5</td>
<td></td>
</tr>
<tr>
<td>Problem 6</td>
<td></td>
</tr>
<tr>
<td>Problem 7</td>
<td></td>
</tr>
<tr>
<td>Problem 8</td>
<td></td>
</tr>
</tbody>
</table>

Total ———/ 80
Notation. Let $D(a, r)$ denote the disc in the complex plane \mathbb{C} centered at a with radius r and $\partial D(a, r) = \{z \in \mathbb{C} : |z - a| = r\}$. Let \mathbb{R} denote the set of all real numbers. Let $H = \{z \in \mathbb{C} : \text{Im}z > 0\}$ be the upper half plane.

Problem 1: Find the line integral:

$$\int_{\gamma} z \sin z \, dz$$

where γ the curve from -1 to 1 taken along a semicircle.
Problem 2: A domain Ω in \mathbb{C} is said to be holomorphic simply connected if for any holomorphic function f on Ω and any simple closed piecewise C^1 curve γ in Ω, one has $\int_{\gamma} f(z)dz = 0$.

(a) Prove that

$$\Omega = \{z = x + iy \in \mathbb{C} : y > x\}$$

is holomorphic simply connected.

(b) Prove that $\Omega = D(0,1) \setminus \{0\}$ is not holomorphic simply connected.
Problem 3:

a) Prove that the series \(\sum_{n=0}^{\infty} e^{n(1+i)}z \) converges to a holomorphic function in a neighborhood of the point \(z_0 = i \).

b) If \(f(z) = \sum_{n=0}^{\infty} e^{n(1+i)}z \) is represented as a power series

\[
f(z) = \sum_{n=0}^{\infty} a_n (z - i)^n,
\]

what is its radius of convergence?
Problem 4: Find an explicit conformal mapping of the domain

\[U = \{ z \in \mathbb{C} : |z - i| < \sqrt{2} \text{ and } |z + i| < \sqrt{2} \} \]

onto the unit disc.
Problem 5: If \(f : \mathbb{C} \to \mathbb{C} \) is an entire function, one can define a sequence of functions \(\{ f^{(n)} \} \) by

\[
f^{(1)} = f, \quad f^{(2)} = f \circ f, \quad f^{(3)} = f \circ f \circ f, \ldots, \quad f^{(n)} = f^{(n-1)} \circ f, \ldots
\]

Prove or disprove: For any entire function \(f : \mathbb{C} \to \mathbb{C} \), the sequence \(\{ f^{(n)} |_{D(0,1)} \} \) of restrictions of \(f^{(n)} \) to the unit disc form a normal family.
Problem 6:

a) Suppose that \(u : \mathbb{C} \to \mathbb{R} \) is a harmonic function such that \(u|_{\mathbb{R}} = 0 \). Does it imply that \(u \equiv 0 \)?

b) Suppose that \(u : \mathbb{C} \to \mathbb{R} \) is a harmonic function such that \(u|_{\partial D(0,1)} = 0 \). Does it imply that \(u \equiv 0 \)?
Problem 7: Let f be entire holomorphic such that

$$|f(z)|^2 = p_n(x, y), \quad z = x + iy,$$

where $p_n(x, y)$ is a polynomial of x and y of degree n. Prove that f is a polynomial of z.
Problem 8: Let f be holomorphic in $D = D(0, 1) \setminus \{0\}$ such that

$$\int_0^{2\pi} |f(re^{i\theta})|d\theta \leq 1, \text{ for all } 0 < r < 1.$$

Prove that $z = 0$ is a removable singularity.