Degenerate Diffusion in Heterogeneous Media Guillermo Reyes Souto

ABSTRACT

In this talk, I will present some recent results, obtained in collaboration with J.L. Vázquez (Madrid) and S. Kamin (Tel-Aviv), on the long-time behavior of non-negative solutions to the Cauchy problem for the Porous Medium Equation in the presence of variable density, i.e.

$$
(\mathbf{P}) \quad \begin{cases}\rho(x) \partial_{t} u=\Delta u^{m} & \text { in } Q:=\mathbb{R}^{n} \times \mathbb{R}_{+} \\ u(x, 0)=u_{0}(x) & \text { in } \mathbb{R}^{n}\end{cases}
$$

We assume $m>1$ and $n \geq 3$.
Both the basic theory and the long-time behavior of solutions in the homogeneous case $\rho=$ const. are well understood by now.

Here, $\rho(x)$ is positive, bounded and has a power-like decay at infinity,

$$
\rho(x) \sim|x|^{-\gamma} \quad \text { as } \quad|x| \rightarrow \infty
$$

for some $\gamma>0$. The data u_{0} are assumed to be non-negative and such that

$$
\int_{\mathbb{R}^{n}} \rho(x) u_{0}(x) d x<\infty
$$

(finite-energy solutions).
Interestingly, the behavior of solutions depends on whether $0<\gamma<2$ or $\gamma>2$. In the first case, the asymptotic behavior is described in terms of a one-parameter family of sourcetype, self-similar solutions of a related singular problem (so called Barenblatt-type solutions, $\left.U_{E}(x, t)\right)$, thus representing a natural extension of the corresponding result for the standard PME.

For $\gamma>2$, however, solutions to (\mathbf{P}) have a universal long-time behavior in separate variables, typical of initial-boundary problems on bounded domains. Thus, the presence of a rapidly decreasing density has the effect of "compactifying" the domain.

If $\rho(x)$ has an intermediate decay, $\rho(x) \sim|x|^{-\gamma}$ with $2<\gamma<\gamma_{2}:=N-(N-2) / m$, solutions still enjoy the finite propagation property (as in the case of lower γ). In this range a more precise description may be given at the diffusive scale in terms of the Barenblatttype solutions $U_{E}(x, t)$ of the related singular equation $|x|^{-\gamma} u_{t}=\Delta u^{m}$. Thus in this range we have two different space-time scales in which the behavior of solutions is non-trivial. The corresponding results complement each other and agree in the intermediate region where both apply, thus providing an example of matched asymptotics.

