## ALGEBRA QUALIFYING EXAM SPRING 2019 QUESTIONS

1. Does the symmetric group $S_{5}$ contain a subgroup isomorphic to:
(a) The dihedral group $D_{8}$ with 8 elements?
(b) The quaternion group $Q_{8}$ with 8 elements?
2. Suppose $A$ is a finitely generated abelian group, $B$ is a subgroup of $A$, and $C=A / B$. Prove that if $C$ is torsion free then the isomorphism classes of $B$ and $C$ determine the isomorphism class of $A$ uniquely.

Give a counterexample that shows the isomorphism class of $A$ may not be uniquely determined if $C$ has a non-trivial torsion.
3. For a group $G$, let $G_{1}:=G$ and let $G_{n+1}:=\left[G, G_{n}\right]$. We say $G$ is nilpotent if $G_{N}=1$ for some $N$. Prove that if $G$ is a $p$-group, i.e. $|G|=p^{r}$ for some prime $p$, then $G$ is nilpotent.
(Recall that if $H, K$ are subgroups of $G$ then $[H, K]=\langle[h, k]| h \in H$ and $k \in K\rangle$ where $[h, k]=h^{-1} k^{-1} h k$.)
4. Throughout this question we assume that $R$ is a commutative ring with 1 .
(a) Let $A$ be a multiplicative subset of $R$ (that is, $0 \notin A$ and $a b \in A$ whenever $a, b \in A)$. Consider an ideal $P$ of $R$ such that $P \cap A=\varnothing$, and $P$ is maximal with this property (that is, $P^{\prime} \cap A \neq \varnothing$ whenever $P^{\prime} \supsetneq P$ is an ideal of $R$ ). Prove that $P$ is a prime ideal of $R$.
(b) Recall that

$$
\mathfrak{N}(R)=\left\{r \in R \mid r^{n}=0 \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

is an ideal of $R$, called the nilradical of $R$. (Do not prove that $\mathfrak{N}(R)$ is an ideal!). Prove that the following are equivalent:
(i) $R$ has exactly one prime ideal.
(ii) Every element of $R$ is either nilpotent (that is, an element of $\mathfrak{N}(R)$ ) or a unit.
(iii) $R / \mathfrak{N}(R)$ is a field.
5. Recall that the ring $\mathbb{Z}[i]$ of Gaussian integers has a Euclidean norm.
(a) Prove that for every ideal $I \neq 0$ of $\mathbb{Z}[i]$, the quotient $\mathbb{Z}[i] / I$ is a finite ring.
(b) Identify what is $\mathbb{Z}[i] /(1+i)$.
6. Assume $n$ is a squarefree integer, i.e., $n$ is a product of distinct primes. Prove that the primitive $n$-th roots of unity constitute a basis of the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ over $\mathbb{Q}$. (Here "basis" is meant in the sense of vector spaces.)
7. Calculate the number of primitive elements of $\mathbb{F}_{27}$ over $\mathbb{F}_{3}$. Recall that if $K / F$ is a field extension then $\alpha \in K$ is called a primitive element of $K$ over $F$ if and only if $K=F(\alpha)$.
8. Let $K / F$ be a Galois algebraic extension with no proper intermediate fields. Prove that $[K: F]$ is prime.
9. Let $V$ be a vector space of over the field $\mathbb{Q}$ of rational numbers of dimension at most $p-2$ where $p$ is a prime. Let $T$ be a linear operator on $V$ such that $T^{p}=I$. Show that $T=I$.
10. Consider $n \times n$ matrices $A, B$ over $\mathbb{C}$ such that the following are satisfied:
(a) $A, B$ are nilpotent with the same nilpotency index (recall the nilpotency index of a matrix $X$ is the smallest number $k$ such that $X^{k}=0$ ).
(b) $\operatorname{rank}(A)=\operatorname{rank}(B)$.
(c) $\operatorname{rank}\left(A^{2}\right)=\operatorname{rank}\left(B^{2}\right)$.

Prove the following:
(i) If $n>9$ then $A, B$ may be non-similar.
(ii) If $n \leq 9$ then $A, B$ are similar.

