ALGEBRA QUALIFYING EXAM SPRING 2019 QUESTIONS

1. Does the symmetric group S_5 contain a subgroup isomorphic to:

- (a) The dihedral group D_8 with 8 elements?
- (b) The quaternion group Q_8 with 8 elements?

2. Suppose A is a finitely generated abelian group, B is a subgroup of A, and C = A/B. Prove that if C is torsion free then the isomorphism classes of B and C determine the isomorphism class of A uniquely.

Give a counterexample that shows the isomorphism class of A may not be uniquely determined if C has a non-trivial torsion.

3. For a group G, let $G_1 := G$ and let $G_{n+1} := [G, G_n]$. We say G is nilpotent if $G_N = 1$ for some N. Prove that if G is a p-group, i.e. $|G| = p^r$ for some prime p, then G is nilpotent.

(Recall that if H, K are subgroups of G then $[H, K] = \langle [h, k] | h \in H$ and $k \in K \rangle$ where $[h, k] = h^{-1}k^{-1}hk$.)

4. Throughout this question we assume that R is a commutative ring with 1.

- (a) Let A be a multiplicative subset of R (that is, $0 \notin A$ and $ab \in A$ whenever $a, b \in A$). Consider an ideal P of R such that $P \cap A = \emptyset$, and P is maximal with this property (that is, $P' \cap A \neq \emptyset$ whenever $P' \supseteq P$ is an ideal of R). Prove that P is a prime ideal of R.
- (b) Recall that

$$\mathfrak{N}(R) = \{ r \in R \mid r^n = 0 \text{ for some } n \in \mathbb{Z}^+ \}$$

is an ideal of R, called the nilradical of R. (Do not prove that $\mathfrak{N}(R)$ is an ideal!). Prove that the following are equivalent:

- (i) R has exactly one prime ideal.
- (ii) Every element of R is either nilpotent (that is, an element of $\mathfrak{N}(R)$) or a unit.
- (iii) $R/\mathfrak{N}(R)$ is a field.

5. Recall that the ring $\mathbb{Z}[i]$ of Gaussian integers has a Euclidean norm.

(a) Prove that for every ideal I ≠ 0 of Z[i], the quotient Z[i]/I is a finite ring.
(b) Identify what is Z[i]/(1+i).

6. Assume *n* is a squarefree integer, i.e., *n* is a product of distinct primes. Prove that the primitive *n*-th roots of unity constitute a basis of the cyclotomic field $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} . (Here "basis" is meant in the sense of vector spaces.)

7. Calculate the number of primitive elements of \mathbb{F}_{27} over \mathbb{F}_3 . Recall that if K/F is a field extension then $\alpha \in K$ is called a primitive element of K over F if and only if $K = F(\alpha)$.

8. Let K/F be a Galois algebraic extension with no proper intermediate fields. Prove that [K : F] is prime. **9.** Let V be a vector space of over the field \mathbb{Q} of rational numbers of dimension at most p-2 where p is a prime. Let T be a linear operator on V such that $T^p = I$. Show that T = I.

10. Consider $n \times n$ matrices A, B over \mathbb{C} such that the following are satisfied:

- (a) A, B are nilpotent with the same nilpotency index (recall the nilpotency index of a matrix X is the smallest number k such that $X^k = 0$).
- (b) rank(A) = rank(B).
- (c) $\operatorname{rank}(A^2) = \operatorname{rank}(B^2)$.

Prove the following:

- (i) If n > 9 then A, B may be non-similar.
- (ii) If $n \leq 9$ then A, B are similar.