## Analysis Comprehensive Exam

June 18, 2019

Math Exam ID:

## SCORES:



**Total:** \_\_\_\_\_ /200

**Problem 1:** Let  $G \subset \mathbb{R}^2$  be an open set and suppose that

 $[0,1]\times [0,1]\subseteq G.$ 

Show that there exists  $\epsilon > 0$  such that

 $[0,1+\epsilon]\times [0,1]\subseteq G.$ 

Math Exam ID:\_\_\_\_\_

**Problem 2:** Let  $\{f_n\}_{n\geq 1}$ , and  $\{g_n\}_{n\geq 1}$  be two sequences of functions defined on [0,1] such that  $f_n$  converges uniformly to f, and  $g_n$  converges uniformly to g on [0,1]. Does it follow that  $f_ng_n$  converges uniformly to fg? Explain your answer. **Problem 3:** A metric d on a space X is called an **ultrametric** if the triangle inequality is replaced by the following stronger property: for all  $x, y, z \in X$ , we have  $d(x, z) \leq \max(d(x, y), d(y, z))$ . Let (X, d) be an ultrametric space. Prove the following:

- 1. If B is an open ball in X, then any point in B is a center of B. (Recall that an open ball is a set of the form  $B(x;r) := \{y \in X : d(x,y) < r\}; x$  is referred to as a center of the ball.)
- 2. Every open ball in X is both open and closed.

**Problem 4:** Let  $E \subset \mathbb{R}$ . Show that if every continuous function  $f : E \to \mathbb{R}$  attains its maximum on E, i.e.,  $\sup_{x \in E} f(x) = f(a)$  for some  $a \in E$ , then E is compact.

**Problem 5:** Suppose that  $f : [0,1] \to \mathbb{R}$  is a function. Prove that f is continuously differentiable if and only if: for every  $\epsilon > 0$ , there are open intervals  $I_1, \ldots, I_n$  such that  $[0,1] \subseteq I_1 \cup \cdots \cup I_n$  and such that, for each  $j = 1, \ldots, n$  and each  $a, b, c, d \in I_j \cap [0,1]$  with  $a \neq b$  and  $c \neq d$ , we have

$$\left|\frac{f(a) - f(b)}{a - b} - \frac{f(c) - f(d)}{c - d}\right| \le \epsilon.$$

**Problem 6:** Let  $T: U \to V$  belong to  $C^2(U)$ , where U and V are open sets in  $\mathbb{R}^2$ . Assume the determinant of the matrix of first derivatives of T is the constant function 1. Denote the variables in U by  $(x_1, x_2)$  and the variables in V by  $(y_1, y_2)$ . Recall that, for any differential form  $\omega$  on V,  $\omega_T$  denotes the differential form on U obtained by change of variables using T.

- (a) Show that if  $\omega = dy_1 \wedge dy_2$  then  $\omega_T = dx_1 \wedge dx_2$ .
- (b) Let  $\eta = y_1 dy_2$ . Show that  $d(x_1 dx_2 \eta_T) = 0$ .

Math Exam ID:\_\_\_\_\_

**Problem 7:** Let  $f : [0,1] \to \mathbb{R}$  be continuous. Let  $m := \min_{x \in [a,b]} f(x)$ and  $M := \max_{x \in [a,b]} f(x)$ . Show that for any  $c \in [m,M]$ , there exists a nondecreasing function  $\alpha$  on [0,1], such that  $\int_a^b f(x) d\alpha(x) = c$ . Math Exam ID:\_\_\_\_\_

**Problem 8:** Let  $f : B \subset \mathbb{R}^n \to \mathbb{R}$  be a continuously differentiable map where B is the open unit ball in  $\mathbb{R}^n$  centered at the origin. Suppose  $\|\nabla f(x)\| \leq 1$  for all  $x \in B$ . Show that

$$|f(x) - f(y)| \le ||x - y||$$

for all  $x, y \in B$ .