Analysis Comprehensive Exam

June 18, 2019

Math Exam ID:

SCORES:

1. /25
2. /25
3. /25
4. $/ 25$
5. \qquad
6. \qquad $/ 25$
7. \qquad /25
8. \qquad /25

Total: /200

Math Exam ID:

Problem 1: Let $G \subset \mathbb{R}^{2}$ be an open set and suppose that

$$
[0,1] \times[0,1] \subseteq G
$$

Show that there exists $\epsilon>0$ such that

$$
[0,1+\epsilon] \times[0,1] \subseteq G
$$

Math Exam ID:

Problem 2: Let $\left\{f_{n}\right\}_{n \geq 1}$, and $\left\{g_{n}\right\}_{n \geq 1}$ be two sequences of functions defined on $[0,1]$ such that f_{n} converges uniformly to f, and g_{n} converges uniformly to g on $[0,1]$. Does it follow that $f_{n} g_{n}$ converges uniformly to $f g$? Explain your answer.

Math Exam ID:

Problem 3: A metric d on a space X is called an ultrametric if the triangle inequality is replaced by the following stronger property: for all $x, y, z \in X$, we have $d(x, z) \leq \max (d(x, y), d(y, z))$. Let (X, d) be an ultrametric space. Prove the following:

1. If B is an open ball in X, then any point in B is a center of B. (Recall that an open ball is a set of the form $B(x ; r):=\{y \in X: d(x, y)<r\} ; x$ is referred to as a center of the ball.)
2. Every open ball in X is both open and closed.

Math Exam ID:

Problem 4: Let $E \subset \mathbb{R}$. Show that if every continuous function $f: E \rightarrow \mathbb{R}$ attains its maximum on E, i.e., $\sup _{x \in E} f(x)=f(a)$ for some $a \in E$, then E is compact.

Math Exam ID:

Problem 5: Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a function. Prove that f is continuously differentiable if and only if: for every $\epsilon>0$, there are open intervals I_{1}, \ldots, I_{n} such that $[0,1] \subseteq I_{1} \cup \cdots \cup I_{n}$ and such that, for each $j=1, \ldots, n$ and each $a, b, c, d \in I_{j} \cap[0,1]$ with $a \neq b$ and $c \neq d$, we have

$$
\left|\frac{f(a)-f(b)}{a-b}-\frac{f(c)-f(d)}{c-d}\right| \leq \epsilon
$$

Math Exam ID:

Problem 6: Let $T: U \rightarrow V$ belong to $C^{2}(U)$, where U and V are open sets in \mathbb{R}^{2}. Assume the determinant of the matrix of first derivatives of T is the constant function 1. Denote the variables in U by $\left(x_{1}, x_{2}\right)$ and the variables in V by $\left(y_{1}, y_{2}\right)$. Recall that, for any differential form ω on V, ω_{T} denotes the differential form on U obtained by change of variables using T.
(a) Show that if $\omega=d y_{1} \wedge d y_{2}$ then $\omega_{T}=d x_{1} \wedge d x_{2}$.
(b) Let $\eta=y_{1} d y_{2}$. Show that $d\left(x_{1} d x_{2}-\eta_{T}\right)=0$.

Math Exam ID:

Problem 7: Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Let $m:=\min _{x \in[a, b]} f(x)$ and $M:=\max _{x \in[a, b]} f(x)$. Show that for any $c \in[m, M]$, there exists a nondecreasing function α on $[0,1]$, such that $\int_{a}^{b} f(x) d \alpha(x)=c$.

Math Exam ID:

Problem 8: Let $f: B \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable map where B is the open unit ball in \mathbb{R}^{n} centered at the origin. Suppose $\|\nabla f(x)\| \leq 1$ for all $x \in B$. Show that

$$
|f(x)-f(y)| \leq\|x-y\|
$$

for all $x, y \in B$.

