Exam Time: 4:00pm-6:30pm, June 16, 2022

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 \longrightarrow / 10$
Problem $4 — / 10$
Problem 5—_ 10
Problem $6 \longrightarrow / 10$
Problem $7 \longrightarrow / 10$
Problem $8 \longrightarrow / 10$
Problem $9 \longrightarrow / 10$

Total $\quad / 90$

Problem 1. Suppose $a_{m, n}$ is a positive number for each $m, n \in \mathbb{N}$. Is it true that

$$
\limsup _{m \rightarrow \infty}\left(\limsup _{n \rightarrow \infty} a_{m, n}\right)=\limsup _{n \rightarrow \infty}\left(\limsup _{m \rightarrow \infty} a_{m, n}\right) ?
$$

Prove or give a counterexample.

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous positive function, and $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
F(x, y, z)=\left(\int_{0}^{x} f(t) d t, \int_{0}^{x+y} f(t) d t, \int_{0}^{x+y+z} f(t) d t\right)
$$

Prove that F is locally (i.e. restricted to sufficiently small neighborhood of any point in \mathbb{R}^{3}) a C^{1} diffeomorphism.

Problem 3. Let $\left\{f_{n}\right\}_{n \in \mathbf{N}}$ be a sequence of continuously differentiable functions on $[0,1]$ such that

$$
\left|f_{n}^{\prime}(x)\right| \leq x^{-\frac{1}{2022}} \quad \text { for } x \neq 0 \text { and } \int_{0}^{1} f_{n}(x) d x=2022
$$

for each $n \in \mathbb{N}$. Prove that the sequence has a subsequence $\left\{f_{n_{k}}\right\}$ that converges uniformly on $[0,1]$.

Problem 4: Is $f(x)=\sum_{n=2}^{\infty}\left(\frac{x}{\ln n}\right)^{n}$ continuous on $(-\infty,+\infty)$? Explain.

Problem 5: Let X be a compact metric space, and suppose that the sequence $\left\{f_{n}\right\}$ in $C(X)$ decreases point-wise to a continuous function $f \in C(X)$; that is, $f_{n}(x) \geq f_{n+1}(x)$ for each n and x, and $f_{n}(x) \rightarrow f(x)$ for each x. Prove that the convergence is actually uniform on X.

Problem 6. Let $\mathbf{v}(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right): \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2}$. Let

$$
D=\left\{(x, y):(x-2)^{2}+y^{2}<9\right\}
$$

be the disc in \mathbb{R}^{2} centered at $(2,0)$ and radius 3. Let $\mathbf{n}=\mathbf{n}(x, y)$ be the unit outer normal vector to ∂D at $(x, y) \in \partial D$. Compute $\int_{\partial D} \mathbf{v} \cdot \mathbf{n} d s$.

Problem 7. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of real numbers such that

$$
\lim _{n \rightarrow \infty} a_{n}=a, \quad \lim _{n \rightarrow \infty} b_{n}=b
$$

Prove

$$
\lim _{n \rightarrow \infty} \frac{a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}}{n}=a b
$$

Problem 8: Let f be a differentiable function on \mathbb{R} such that

$$
\lim _{|x| \rightarrow \infty} f(x)=1
$$

Prove that there is a $x_{0} \in \mathbb{R}$ such that $f^{\prime}\left(x_{0}\right)=0$.
9. Let $1<p, q<\infty$ with $1 / p+1 / q=1$.
(i) Prove

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}, \quad x, y>0
$$

(ii) Let $f(x)$ and $g(x)$ be bounded Riemann integrable real-valued functions on the unit ball $B_{n} \subset \mathbb{R}^{n}$. Prove Hölder's inequality:

$$
\left|\int_{B_{n}} f(x) g(x) d x\right| \leq\left(\int_{B_{n}}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{B_{n}}|g(x)|^{q} d x\right)^{1 / q}
$$

