Analysis Comprehensive Exam

June 26, 2023

Math Exam ID:

SCORES:

1. /10
2. \qquad /10
3. \qquad
4. \qquad /10
5. \qquad $/ 10$
6. \qquad $/ 10$
7. \qquad /10
8. \qquad /10
9. \qquad /10
\qquad

Math Exam ID:

Problem 1: Let A be an infinite closed subset of \mathbb{R}^{n}. Show that there exists a countable set whose closure is A.

Math Exam ID:

Problem 2: Consider the sequence recursively defined by

$$
\left\{\begin{array}{l}
x_{n+1}=\frac{x_{n}^{2}+1}{2}, \quad n \geq 1 \\
x_{1}=0 .
\end{array}\right.
$$

Show that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges and determine its limit.

Math Exam ID:

Problem 3: Show that the sum

$$
\sum_{n \in \mathbb{N}} \frac{n^{2}}{n^{4}+x^{4}}
$$

converges uniformly on $[-2,2]$ to a continuous function denoted by f. Give a formula for $f^{\prime}(x)$ and prove that your formula is correct.

Math Exam ID:

Problem 4: Let $f, g:[0,1] \rightarrow[0, \infty)$ be continuous functions satisfying

$$
\sup _{0 \leq x \leq 1} f(x)=\sup _{0 \leq x \leq 1} g(x)
$$

Prove that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.

Math Exam ID:

Problem 5: Let $\left\{b_{n}\right\}$ be a monotonic increasing sequence of positive numbers and $\lim _{n \rightarrow \infty} b_{n}=+\infty$. Show that, if $\sum_{n=1}^{\infty} a_{n}$ converges, then

$$
\lim _{n \rightarrow \infty} \frac{a_{1} b_{1}+\cdots+a_{n} b_{n}}{b_{n}}=0
$$

Math Exam ID:

Problem 6: Let f be a real-valued continuous function on $[0,1]$ that is differentiable on $(0,1)$. Assume

$$
\sup _{0<x<1}\left|f^{\prime}(x)\right|=M<\infty
$$

Show that for all $n \in \mathbb{N}$:

$$
\left|\frac{1}{n} \sum_{j=0}^{n-1} f(j / n)-\int_{0}^{1} f(x) d x\right| \leq \frac{M}{n} .
$$

Math Exam ID:

Problem 7: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x=0$ and satisfies

$$
\lim _{x \rightarrow 0} \frac{f(2 x)-f(x)}{x}=m .
$$

Show that $f^{\prime}(0)=m$.

Math Exam ID:

Problem 8: Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be smooth functions with $f(0)=0$ and $f^{\prime}(0) \neq 0$. Consider the equation

$$
f(x)=\operatorname{tg}(x), \quad t \in \mathbb{R}
$$

Show that there exists $\delta>0$ such that on the interval $|t|<\delta$, there is a unique smooth solution $x(t)$ to the above equation with $x(0)=0$. Then calculate $x^{\prime}(0)$ and $x^{\prime \prime}(0)$.

Math Exam ID:

Problem 9: Compute the volume of the balls

$$
B_{n}(r)=\left\{x \in \mathbb{R}^{n}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq r^{2}\right\}
$$

for $n=3$ and $n=4$.

