Math Exam ID:

Analysis Comprehensive Exam

9:00AM-11:30AM, June 19, 2018

 Problem 1 — / 10

 Problem 2 — / 10

 Problem 3 — / 10

 Problem 4 — / 10

 Problem 5 — / 10

 Problem 6 — / 10

 Problem 7 — / 10

 Problem 8 — / 10

 Problem 9 — / 10

 Total — / 90

Math Exam ID: _____

(1) Let $E \subset \mathbb{R}$ be uncountable. Prove that $\exists x \in \mathbb{R}$ such that $E \cap (-\infty, x)$ and $E \cap (x, \infty)$ are both uncountable.

(2) Let $(a_n)_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and let $f\colon [-1,1]\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} a_n, & x = 1/n, & n \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}$$

Find a necessary and sufficient condition on (a_n) for each item below so that f is

- (a) continuous at 0,
- (b) differentiable at 0,
- (c) Riemann integrable on [-1, 1].

Note: For part (c) you cannot simply quote a theorem that says "a function with countably many discontinuities is Riemann integrable", because this is not a theorem from Rudin and was not proved in lectures.

Score:——/10	Math Exam ID:
,	

More space for Problem (2):

Math Exam ID: _____

(3) Let $f : [0,1] \to [0,1]$ be convex. Prove that the arclength of the graph of f is at most 3.

Recall that f is convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for any $x, y \in [0, 1]$ and $\lambda \in [0, 1]$.

- (4) Suppose that $f:[a,b]\to\mathbb{R}$ is a function. We say that f is:
 - absolutely continuous if, for every $\epsilon > 0$, there is $\delta > 0$ such that, whenever (x_i, y_i) , $i = 1, \ldots, k$, is a finite sequence of disjoint subintervals of [a, b] with $\sum_{i=1}^{k} (y_i x_i) < \delta$, we have $\sum_{i=1}^{k} |f(y_i) f(x_i)| < \epsilon$.
 - of bounded variation if there is M > 0 such that, whenever $P = \{a = x_0, x_1, \dots, x_n = b\}$ is a partition of [a, b], we have $\sum_{i=1}^{n} |f(x_i) f(x_{i-1})| \leq M$.
 - (a) Suppose that f is C^1 . Prove that f is absolutely continuous.
 - (b) Suppose that f is absolutely continuous. Prove that f is of bounded variation.

		7
Score:——/10	Math Exam ID:	
More space for Problem (4):		

α	111	\sim
Score:——	/ 11	١
DCOIC.	/ TI	J

Math Exam ID: _____

(5) Let $f: X \to Y$ be a continuous function where X and Y are metric spaces. Show that f(K) is compact whenever $K \subset X$ is compact.

Note: This is a theorem from Rudin, but you must give a proof and cannot simply quote it.

Math Exam ID: _____

(6) In a metric space X, with metric d, let E be a nonempty subset of X. Define $f_E: X \to \mathbb{R}$ by

$$f_E(x) = \inf\{d(x, y) : y \in E\}$$

for each $x \in X$. Prove

- (a) f_E is uniformly continuous on X.
- (b) $\overline{E} = \{ x \in X : f_E(x) = 0 \}.$

Math Exam ID: _____

(7) Let $f: I \to \mathbb{R}$ be continuous where $I = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$. Show that

$$g(x_1, \dots, x_{n-1}) = \int_{a_n}^{b_n} f(x_1, \dots, x_{n-1}, x_n) dx_n$$

is continuous on $[a_1, b_1] \times \cdots \times [a_{n-1}, b_{n-1}] \subset \mathbb{R}^{n-1}$.

(8) Suppose that (X, d_X) and (Y, d_Y) are metric spaces. We make $X \times Y$ into a metric space by equipping it with the metric $d((x_1, y_1), (x_2, y_2)) := \max(d_X(x_1, x_2), d_Y(y_1, y_2))$. Show that $X \times Y$ is connected if and only if both X and Y are connected.

Math Exam ID: _____

(9) Let $\Sigma : [0,1]^2 \to \mathbb{R}^3$ be the 2-surface given by $\Sigma(\theta,\varphi) := (\sin \pi \theta \cos 2\pi \varphi, \sin \pi \theta \sin 2\pi \varphi, \cos \pi \theta).$ Prove that $\partial \Sigma = 0$.

Note: This is an example in Rudin, but you cannot simply quote it.