Applied Mathematics Qualifying Exam

September 16, 2024

Time limit: 2.5 hours

Instructions: This exam has three parts A, B, and C, each of which contains three problems. Choose TWO problems from each of Parts A and C, and in Part B, you MUST do Problem 1 and then choose ONE of problems 2 and 3, for a total of SIX problems.

Part A

Choose any TWO of the following problems.

1. Consider the following boundary value problem for y(x)

$$\varepsilon y'' + y' - x^{\beta} y = 0, \quad 0 < x < 1$$

 $y(0) = y(1) = 1$

where $0 < \varepsilon \ll 1$ and $\beta > -1$. Find a leading order approximation to the solution using boundary layer theory.

2. Let $\mathcal{X} = C^0([-\varepsilon, \varepsilon], \mathbb{R}^n)$ be the space of continuous functions with the supremum norm $||u|| = \sup_{t \in [-\varepsilon, \varepsilon]} |u(t)|$. Consider the map $T : \mathcal{X} \to \mathcal{X}$ defined by

$$(Tu)(t) = u_0 + \int_0^t f(u(s)) ds,$$

where $u_0 \in \mathbb{R}^n$, and f is locally Lipschitz. That is, there exist $K, \delta > 0$ such that $|f(u) - f(v)| \le K|u - v|$ for all $u, v \in B_{\delta}(u_0) = \{u \in \mathbb{R}^n : |u - u_0| < \delta\}$.

- (a) Show that T is a contraction mapping on the space $\mathcal{B} = \{u \in \mathcal{X} : \sup_{t \in [-\varepsilon,\varepsilon]} |u(t) u_0| < \delta\}$ for an appropriate choice of $\varepsilon > 0$. What can be deduced about fixed points of the map T? (You may quote the contraction mapping theorem without proof).
- (b) What does part (a) imply about solutions to the initial value problem $\dot{u} = f(u), u(0) = u_0$?
- (c) Give an example of a *continuous* vector field $f : \mathbb{R} \to \mathbb{R}$ and $u_0 \in \mathbb{R}$ such that the initial value problem in part (b) has multiple solutions (you should find two solutions explicitly).
- (d) Now suppose that $f \in C^k(\mathbb{R}^n)$, $k \ge 1$. Describe the smoothness (in t and u_0) of the solution $u(t; u_0)$ to the initial value problem $\dot{u} = f(u), u(0) = u_0$.

3. Consider the following ordinary differential equation

$$\dot{x} = x(1 - 3x^2 - 4y^2) - 2y$$
$$\dot{y} = y(1 - 4x^2 - 3y^2) + 2x$$

- (a) Show that the system has at least one periodic orbit (use polar coordinates).
- (b) Let $(x_*(t), y_*(t))$ denote the periodic orbit from part (a), with period T (you do not need to find x_*, y_* or T explicitly). Find the Floquet multipliers associated with the linearization about this orbit (your answer may include integral expressions involving x_*, y_* and/or T).
- (c) Determine whether the periodic orbit is locally asymptotically stable.

Part B

You must complete problem 1, and then choose ONE of problems 2 or 3.

1. (Mandatory) Consider a system of two ODEs of the form:

$$\frac{dx}{dt} = f(x, y), \quad \frac{dy}{dt} = g(x, y).$$

Suppose that it is more computationally expensive to evaluate g than to evaluate f.

(a) Show that the multi-rate explicit Euler method defined by

$$x_{k+1/2} = x_k + \frac{\Delta t}{2} f(x_k, y_k)$$

$$x_{k+1} = x_{k+1/2} + \frac{\Delta t}{2} f(x_{k+1/2}, y_k)$$

$$y_{k+1} = y_k + \Delta t q(x_k, y_k)$$

is locally second order accurate, where Δt is the time step. Only consider the order at integer time subscripts.

(b) Apply the method from (a) to the system

$$\frac{dx}{dt} = -x + y, \quad \frac{dy}{dt} = -y.$$

Under what conditions on the time step Δt will the discrete solution remain stable, i.e., $\lim_{k\to\infty} x_k = \lim_{k\to\infty} y_k = 0$ for any initial condition?

- 2. Let A be a $m \times n$ matrix and b be a $m \times 1$ vector. Consider the least squares problem: Find x that minimizes $||Ax b||_2^2$.
 - (a) Give necessary and sufficient conditions for x to be a solution of the least squares problem.
 - (b) When is the solution unique?
 - (c) When is the corresponding residual vector r = Ax b unique?
 - (d) Let

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Find the least squares solution x that also minimizes $||x||_2^2$.

- 3. (a) Let A be a symmetric, $n \times n$ matrix. Show that the sum of the eigenvalues of A is equal to the sum of the diagonal elements of A. **Hint:** Compare $\det(A \lambda I)$ and $p(\lambda) = (\lambda_1 \lambda) \cdots (\lambda_n \lambda)$.
 - (b) Consider solving Ax = b, where A is $n \times n$ nonsingular. Derive the estimate for the relative error in the solution $\frac{\|\delta x\|}{\|x\|}$ if the right hand side b is perturbed by δb .
 - (c) Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 + \epsilon \end{pmatrix}$, $\epsilon > 0$. How small should ϵ be for you to call the matrix ill-conditioned?

Part C

Choose any TWO of the following problems.

- 1. Let a and b be two points on the unit sphere. Find the shortest path on the sphere connecting these two points.
 - (a) Use the spherical coordinate to write a parametrization of the curve and then find the functional for the length of curves connecting a and b.
 - (b) Solve the corresponding Euler-Lagrange equation.
 - (c) Justify the solution is the global minimum.
- 2. Consider a frictionless harmonic oscillator consisting of a mass m on a spring of constant k. The potential energy is $V = \frac{1}{2}kx^2$ and the kinetic energy is $T = \frac{1}{2}m\dot{x}^2$.
 - (a) Write out the Lagrangian and the Euler-Lagrange equation.
 - (b) Write out the Hamiltonian and the Hamilton system.
 - (c) Solve the Hamilton system for the position as a function of time.
- 3. Assume $F \in C^2$ and $|F''| \leq \lambda_1$, where λ_1 is the minimal eigenvalue of $-\Delta$ operator with homogeneous Dirichlet boundary condition on Ω . Consider

$$\min_{u \in H_0^1(\Omega)} I(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + F(u) \right) \, \mathrm{d}x.$$

Assume $u_0 \in H_0^1(\Omega)$ solves the Euler-Lagrange equation. Prove it is minimum.