Print Your I.D.Number:

Qualifying Examination, June 19, 2019
1:00 PM - 3: 30 PM, Room RH 306

Table of your scores
Problem 1 - / 10
Problem $2 — / 10$
Problem $3 — / 10$
Problem $4 — / 10$
Problem $5 —$ - / 10
Problem $6 —$ - / 10
Problem $7 — / 10$
Problem $8-/ 10$

Total $\quad / 80$

Notation:

C denotes the complex plane; $i=\sqrt{-1}$;
$D\left(z_{0}, r\right)$ denotes the open disc in \mathbf{C} centered at z_{0} and radius r;
$U=\{z=x+i y: y>0\}$ is the upper half plane in \mathbf{C}.

1. Let $f(z)$ be analytic in the region $0<|z|<1$, which satisfies $\operatorname{Re} f(z)<2$. Show that $z=0$ is a removable singularity of f.
2. Let $u: \mathbf{C} \rightarrow \mathbf{R}$ be a nonconstant real harmonic function. Show that there exists a sequence of points $\left\{z_{n}\right\} \in \mathbf{C}$ such that $\lim _{n \rightarrow \infty} u\left(z_{n}\right)=-\infty$.
3. a) State the Schwarz-Pick Lemma.
b) Suppose $f: D(0,1) \rightarrow D(0,1)$ is a holomorphic mapping such that $f(0)=\frac{1}{6}$. Give an upper bound for $\left|f^{\prime}(0)\right|$, and characterize the functions for which the upper bound is an equality.
4. Let

$$
f(z)=\frac{z^{3}}{\left(z^{2}+1\right) e^{1 / z}}
$$

a)Find and classify all the singularities of $f(z)$ in the extended complex plane.
b) Evaluate

$$
\oint_{\Gamma} f(z) d z,
$$

where $\Gamma=\{z \in \mathbf{C}| | \operatorname{Re} \mathbf{z}|+|\operatorname{Im} \mathbf{z}|=\mathbf{3}\}$.
c) Does there is a holomorphic function F on $|z|>3$ such that $F^{\prime}(z)=f(z)$ on $|z|>3$? (Justify your answer)
5. Assume that the power series

$$
f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}
$$

defines a holomorphic function for $|z|<1$ and assume that

$$
\left|a_{1}\right|>\sum_{j=2}^{\infty} j\left|a_{j}\right| .
$$

Show that the function $f(z)$ is one-to-one in the open unit disk $D(0,1)$.
6. Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ denote an entire function satisfying the estimate

$$
|f(z)| \leq 10 e^{|z|}, \quad \text { for all } z \in \mathbf{C}
$$

Prove that the coefficients a_{j} satisfy

$$
\left|a_{j}\right| \leq 10(e / j)^{j}, \quad \text { for all } j \in \mathbf{N} \text {. }
$$

7. Construct a conformal map ϕ which maps D_{1} onto D_{2}, where

$$
D_{1}=\{z \in \mathbf{C}: 0<\operatorname{Re} z<2\} \text { and } D_{2}=\{z \in \mathbf{C}:|z|>1\} .
$$

8. Let u be harmonic in $D(0,1) \backslash\{0\}$ satisfying

$$
\lim _{z \rightarrow 0} \frac{u(z)}{\ln |z|}=0 .
$$

Prove that u is harmonic on $D(0,1)$.

