Complex Analysis Qualifying Exam

September 15, 2022

Math Exam ID:

1. /10
2. /10
3. /10
4.

5. \qquad
6. / 10
7. \qquad /10
8.

Total:
180

Math Exam ID:

Problem 1: Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function such that $|\operatorname{Re}(f(z))|<1$ for all $z \in \mathbb{D}$. Show that $\left|f^{\prime}(0)\right| \leq 2$.

Math Exam ID:

Problem 2: Let f be an entire function. Show that the following series converges uniformly on compact subsets of \mathbb{C} :

$$
\sum_{n=1}^{\infty} \frac{f^{(n)}(z)}{n^{n}}
$$

Math Exam ID:

Problem 3: Let f be an entire function. Suppose the family

$$
\mathcal{F}=\left\{f_{n} ; f_{n}(z)=f(n z)\right\}
$$

is a normal family on the annulus $\{1<|z|<2\}$. Show that f is a constant.

Math Exam ID:

Problem 4: Let p, q be polynomials on \mathbb{C} and assume that

$$
p(0)=0, \quad p^{\prime}(0) \neq 0
$$

and $|p(z)|>0$, for all $0<|z| \leq 1$.
(i) Show that there exists $\delta>0$ such that for all $\varepsilon \in \mathbb{C},|\varepsilon|<\delta$, the polynomial $z \mapsto p(z)+\varepsilon q(z)$ has a unique root $z(\varepsilon) \in \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, which is simple.
(ii) Prove that the function $\varepsilon \mapsto z(\varepsilon)$ is holomorphic on $\{\varepsilon \in \mathbb{C}:|\varepsilon|<\delta\}$.

Math Exam ID:

Problem 5: Let $\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. Determine all holomorphic functions $f: \mathbb{C}_{+} \rightarrow \mathbb{C}$ that satisfy $f(i \sqrt{n})=n$ and $\left|f^{(n)}(i)\right| \leq 3$ for $n=1,2, \ldots$.

Math Exam ID:

Problem 6: Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Let f be holomorphic in a neighborhood of $\overline{\mathbb{D}}$, which satisfies

$$
|f(0)|+\left|f^{\prime}(0)\right|<\inf \{|f(z)|:|z|=1\} .
$$

Show that f has at least two zeros (counting multiplicity) in \mathbb{D}.

Math Exam ID:

Problem 7: Let $\Omega \subset \mathbb{C}$ be open bounded simply connected and let $f: \Omega \rightarrow \Omega$ be holomorphic such that $f(0)=0,\left|f^{\prime}(0)\right|<1$. Let

$$
f^{(n)}=f \circ f \circ \cdots \circ f
$$

be the n-fold composition of f with itself, $n=1,2, \ldots$ Show that $f^{(n)} \rightarrow 0$ uniformly on compact subsets of Ω, as $n \rightarrow \infty$.

Math Exam ID:

Problem 8: Suppose f and g are entire functions with no common zeros. Show that there exist entire functions F and G such that

$$
f F+g G=1
$$

