Complex Analysis Qualifying Exam

June 13, 2022

Math Exam ID:

1. ___________/10
2. ___________/10
3. ___________/10
4. ___________/10
5. ___________/10
6. ___________/10
7. ___________/10
8. ___________/10

Total: ___________/80
Problem 1: Let $\varepsilon > 0$ and let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ be a polynomial with complex coefficients such that $|a_k - 1| \leq \varepsilon$ for all $k = 0, \ldots, n$. Show that for $\varepsilon > 0$ sufficiently small, $P(z)$ has n simple zeros in the annulus $\{ z \in \mathbb{C} : \frac{1}{2} < |z| < 2 \}$.
Problem 2: Let $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$ and let $H = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$. Compute

$$\sup \{ \text{Im} f'(i/2) : f : H \to \mathbb{D} \text{ holomorphic} \}.$$
Problem 3: Let f be holomorphic on $H = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ and continuous on $\overline{H} = \{ z \in \mathbb{C} : \text{Im}(z) \geq 0 \}$. Suppose there exist some $C, \epsilon > 0$ such that

$$|f(z)| \leq \frac{C}{(|z| + 1)^\epsilon}, \quad z \in \overline{H}.$$

Prove that

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t - z} \, dt,$$

for all $z \in H$.
Problem 4: Let f be a holomorphic function defined on a neighborhood of $\mathbb{D} = \{ z \in \mathbb{C} : |z| \leq 1 \}$. Assume that whenever $|z| = 1$, one has $\text{Re} f(z) = \text{Im} f(z)$. Show that f must be a constant.
Problem 5: Find all holomorphic functions $f : \mathbb{C} \to \mathbb{C}$ such that for all $z \in \mathbb{C}$

$$f(z + 1) = e^{2\pi} f(z) \quad \text{and} \quad f(z + i) = f(z).$$
Problem 6: Let f be a holomorphic function on $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$ and assume that $0 < |f(z)| \leq 1$ when $z \in \mathbb{D}$. Prove that for all $z \in \mathbb{D}$

$$|f(0)| \frac{|z|}{1-|z|} \leq |f(z)| \leq |f(0)| \frac{1-|z|}{|z|}.$$

Problem 7: Let \mathcal{E}_M be the set of functions holomorphic on $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$ and continuous on $\overline{\mathbb{D}} = \{ z \in \mathbb{C} : |z| \leq 1 \}$ that satisfy

$$\int_0^{2\pi} |f(e^{it})|^2 dt \leq M < \infty.$$

Show that \mathcal{E}_M is a normal family.
Problem 8: Determine all entire functions $f : \mathbb{C} \to \mathbb{C}$ such that

$$|f(z)| \leq e^{|z|},$$

for all large values of $|z|$, and

$$f(k^{\frac{1}{4}}) = k,$$

for all $k \in \mathbb{N}$.

Hint: Note that $f(z) = z^4$ satisfies the above conditions.