Complex Analysis Qualifying Exam

June 13, 2022

Math Exam ID: _____

Total: _____ /80

Math Exam ID:_____

Problem 1: Let $\varepsilon > 0$ and let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$ be a polynomial with complex coefficients such that $|a_k - 1| \le \varepsilon$ for all $k = 0, \dots, n$. Show that for $\varepsilon > 0$ sufficiently small, P(z) has n simple zeros in the annulus $\{z \in \mathbb{C} : \frac{1}{2} < |z| < 2\}$.

Math Exam ID:_____

Problem 2: Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let $H = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$. Compute $\sup\{\text{Im} f'(i/2) : f : H \to \mathbb{D} \text{ holomorphic}\}.$ **Problem 3:** Let f be holomorphic on $H = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ and continuous on $\overline{H} = \{z \in \mathbb{C} : \text{Im}(z) \ge 0\}$. Suppose there exist some $C, \epsilon > 0$ such that

$$|f(z)| \leq \frac{C}{(|z|+1)^{\epsilon}}, \quad z \in \overline{H}.$$

Prove that

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} dt,$$

for all $z \in H$.

Problem 4: Let f be a holomorphic function defined on a neighborhood of $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$. Assume that whenever |z| = 1, one has $\operatorname{Re} f(z) = \operatorname{Im} f(z)$. Show that f must be a constant.

Problem 5: Find all holomorphic functions $f : \mathbb{C} \to \mathbb{C}$ such that for all $z \in \mathbb{C}$

 $f(z+1) = e^{2\pi}f(z)$ and f(z+i) = f(z).

Math Exam ID:_____

Problem 6: Let f be a holomorphic function on $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and assume that $0 < |f(z)| \le 1$ when $z \in \mathbb{D}$. Prove that for all $z \in \mathbb{D}$

 $|f(0)|^{\frac{1+|z|}{1-|z|}} \le |f(z)| \le |f(0)|^{\frac{1-|z|}{1+|z|}}.$

Problem 7: Let $\mathcal{E}_{\underline{M}}$ be the set of functions holomorphic on $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and continuous on $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \le 1\}$ that satisfy

$$\int_0^{2\pi} |f(e^{it})|^2 dt \le M < \infty.$$

Show that \mathcal{E}_M is a normal family.

Problem 8: Determine all entire functions $f : \mathbb{C} \to \mathbb{C}$ such that

 $|f(z)| \le e^{|z|},$

for all large values of |z|, and

$$f(k^{\frac{1}{4}}) = k,$$

for all $k \in \mathbb{N}$.

Hint: Note that $f(z) = z^4$ satisfies the above conditions.