Complex Analysis

Qualifying Exam

Friday, September 18, $2020-4: 00 \mathrm{pm}-6: 30 \mathrm{pm}$

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Math Exam ID \#:

Problem 1.

Prove that there exists no holomorphic function f such that

$$
f(z)=u(x, y)+(2+3 i) y^{2}, \quad z=x+i y
$$

where $u(x, y)$ is a real valued function.

Problem 2.

Let $f(z)$ be an entire function such that $|f(z)| \geq|z|^{\alpha}$ for all $|z| \leq 1$, where $\alpha=\frac{2019}{2020}$. Prove that $|f(0)| \geq 1$.

Problem 3.

Prove that for any $a \in \mathbb{C}$ and $n \geq 2$, the polynomial $z^{n}+a z+a$ has at least one root in the disk $\{|z| \leq 2\}$.

Problem 4.
Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}-\pi^{2}\right)} d x
$$

Problem 5.

Suppose the radius of convergence of the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is equal to 2 . Find the radius of convergence of the series

$$
\sum_{n=0}^{\infty} 2^{\sqrt{n}}\left(\left|a_{2 n}\right|+\left|a_{2 n+1}\right|\right) z^{3 n}
$$

Problem 6.

Find explicitly a conformal mapping of the domain

$$
\{|z|<1, \operatorname{Re} z>0, z \notin[0,1 / 2]\}
$$

onto the unit disc.

Problem 7.

Suppose $\mathcal{F}_{i}, i=1,2,3$, is a family of holomorphic functions on the unit $\operatorname{disc} \mathbb{D}=\{|z|<1\}$ given by
$\mathcal{F}_{1}=\{f: \mathbb{D} \rightarrow \mathbb{C}, f$ is a polynomial whose coefficients are bounded by 1$\}$,

$$
\mathcal{F}_{2}=\{f: \mathbb{D} \rightarrow \mathbb{C}, f \text { is a polynomial of degree at most } 2020\},
$$

$$
\mathcal{F}_{3}=\mathcal{F}_{1} \cap \mathcal{F}_{2} .
$$

Which of the families $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$ are normal? Explain your answer.

Problem 8.

Let $U \subseteq \mathbb{C}, U \neq \mathbb{C}$, be a simply connected open set. Suppose $f: U \rightarrow U$ is holomorphic (non necessarily one-to-one), and $f(z)$ is not identically equal to z. Prove or disprove each of the following statements:

1) There exists at most one fixed point of f in U.
2) There exists exactly one fixed point of f in U.
