Comprehensive Exam in Real Analysis

Tuesday, June 19, 2021 - 4:00-6:30pm

Problem	1	2	3	4	5	6	7	8	9	Σ
Points										

Each problem is worth 10 points. No books, notes, or calculators are allowed.

Student's name:

Problem 1.

Let $E \subset \mathbb{R}$ be an uncountable set. Prove that the set of limit points of E is also uncountable.

Problem 2.

Consider a sequence of real numbers $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ given by

$$
a_{n}=\frac{1^{\sqrt{2}}+2^{\sqrt{2}}+3^{\sqrt{2}}+\cdots+n^{\sqrt{2}}}{n^{\sqrt{2}+1}}
$$

Does it converge? If yes, find $\lim _{n \rightarrow \infty} a_{n}$.

Problem 3.

Let K be a nonempty compact metric space with metric d, and suppose $f: K \rightarrow K$ obeys $d(f(x), f(y))<d(x, y)$ for all distinct $x, y \in K$. Prove that there is a unique $x_{0} \in K$ with $f\left(x_{0}\right)=x_{0}$.

Problem 4.
Let $f(x)$ be a continuous function on $[0,1]$. Prove that

$$
\lim _{h \rightarrow 0^{+}} \int_{0}^{1} \frac{h}{h^{2}+x^{2}} f(x) d x=\frac{\pi}{2} f(0)
$$

Problem 5.

Let K be a compact metric space, and let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a uniformly bounded equicontinuous family of functions $K \rightarrow \mathbb{R}$. For each $n \in \mathbb{N}$, define $g_{n}: K \rightarrow$ \mathbb{R} by

$$
g_{n}(x)=\max \left\{f_{1}(x), \ldots, f_{n}(x)\right\} .
$$

Prove that the sequence $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly.

Problem 6.

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y)= \begin{cases}0, & \text { if }(x, y)=(0,0) ; \\ \frac{x y^{3}}{x^{2}+y^{4}}, & \text { otherwise }\end{cases}
$$

a) Show that f is continuous;
b) Show that partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at every point $(x, y) \in \mathbb{R}^{2}$;
c) Is $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable? Explain your answer.

Problem 7.

Prove that the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=\sin \left(\sqrt{x^{2}+|\sin y|}\right)
$$

is uniformly continuous on \mathbb{R}^{2}.

Problem 8.

Let $f(x)$ be a twice differentiable function satisfying $\lim _{x \rightarrow 0} \frac{f(x)}{x}=a$. Does the series $\sum_{n=1}^{\infty}(-1)^{n} f\left(\frac{1}{n}\right)$ converges? Does it converge absolutely? How does the answer depend on a ?

Problem 9.

Let $U \subset \mathbb{R}^{2}$ be a region bounded by parabolas $y=x^{2}$ and $x=y^{2}$. Evaluate

$$
\int_{\partial U}\left(y+x^{2021}\right) d x+\left(2023 x-e^{2022 y}\right) d y
$$

where the boundary ∂U is oriented counterclockwise.

