ADVISORY EXAM IN ANALYSIS COMPREHENSION

Friday, September 13, 2024 — 1:00-3:30pm

Problem	1	2	3	4	5	6	7	8	9	Σ
Points										

Each problem is worth 10 points. No books, notes, or calculators are allowed. Please do not use the back of the sheets in your solutions.

Problem 1.

Show that for every $N \in \mathbb{N}$

$$\sum_{k=1}^{N} \frac{1}{k} \ge \ln(N+1)$$

Problem 2.

Let f be a continuous function on [-1,1] such that $\int_{-1}^{1} f(x)x^{2n}dx=0$ for all integers $n\geq 0$. Show that f(0)=0.

Problem 3.

Let $K_1, K_2 \subset l^2(\mathbb{N})$ be two compact sets in the Hilbert space $l^2(\mathbb{N})$. Define $S = \{v \in l^2(\mathbb{N}) \mid v = v_1 + v_2 \text{ for some } v_1 \in K_1, v_2 \in K_2\}$.

Prove that S is compact.

Problem 4.

Let $f:(0,+\infty)\to (0,+\infty)$ be twice differentiable with f''<0.

- a) Prove that f is increasing;
- b) Prove that f is uniformly continuous.

Problem 5.

Which of the following statements are true? Explain your answer.

- a) If (M,d) is a metric space, and $f:M\to M$ is a map such that for any distinct $x,y\in M$ one has d(f(x),f(y))< d(x,y), then f has exactly one fixed point in M.
- b) If (M,d) is a complete metric space, and $f:M\to M$ is a map such that d(f(x),f(y))< d(x,y) for any distinct $x,y\in M$, then f has exactly one fixed point in M.
- c) If (M,d) is a bounded metric space, and $f:M\to M$ is a map such that d(f(x),f(y))< d(x,y) for any distinct $x,y\in M$, then f has exactly one fixed point in M.
- d) If (M,d) is a compact metric space, and $f:M\to M$ is a map such that d(f(x),f(y))< d(x,y) for any distinct $x,y\in M$, then f has exactly one fixed point in M.

Problem 6.

Let the function N(p,t), $N\in C^{\infty}(\mathbb{R}\times(0,\infty))$, satisfy the inequality

$$N(p+a, t+a^2) + N(p-a, t+a^2) \ge 2N(p, t)$$

for all $a, p \in \mathbb{R}$ and all t > 0. Show that then N must satisfy

$$\frac{1}{2} \frac{\partial^2}{\partial p^2} N(p,t) + \frac{\partial}{\partial t} N(p,t) \ge 0$$

for all $p \in \mathbb{R}$ and all t > 0.

Problem 7.

Let Q be a square in \mathbb{R}^2 with the vertices (1,1),(1,-1),(-1,1), and (-1,-1). Evaluate

$$\int_C \left(\frac{-y}{x^2 + y^2}\right) dx + \left(\frac{x}{x^2 + y^2}\right) dy,$$

where ${\cal C}$ is the boundary of ${\cal Q}$ oriented counterclockwise.

Problem 8.

Calculate the integral

$$\int_{\mathbb{R}^2} e^{-3x^2 + 2xy - 3y^2} dx dy$$

Problem 9.

Give an example of a path connected bounded complete metric space that is not separable.