1. Let G be a group of size 42.

 (1) Prove that G has a subgroup H of order 6 and any two such subgroups are conjugate in G.

 (2) Deduce that $G = H \times N$, where N is a normal subgroup of order 7.
2. Let p be a prime. Show that for any Sylow p-subgroup $H \subset GL_n(\mathbb{F}_p)$ there exists a basis in the vector space $V = \mathbb{F}_p^n$ such that H consists of \mathbb{F}_p-linear maps given, in that basis, by an upper-triangular matrix with 1 on the diagonal.
3. For a group G, let $G_1 := G$ and let $G_{n+1} := [G_n, G_n]$. We say G is nilpotent if $G_N = 1$ for some N. Prove that if G is a p-group, i.e. $|G| = p^n$ for some prime p, then G is nilpotent.
4. Let $R \subseteq \mathbb{Q}$ be the subring in the field of rational numbers, given by the fractions $\frac{a}{b}$ with $a \in \mathbb{Z}$ and $b = 2^k3^l$ with $k, l \geq 0$. Describe the ideals of R. Is R a PID?
5. Let $S = \{a + bi | a, b \in \mathbb{Z}\} \subset \mathbb{C}$ be the ring of Gaussian integers.

(1) Show that S is a Euclidean Domain;
(2) Find a decomposition of $a = 11 \in S$ into a product of irreducibles in S;
(3) Find a decomposition of $b = 13 \in S$ into a product of irreducibles in S.

6. Let V be a nonzero finite-dimensional vector space over the complex numbers.

(1) If S and T are commuting linear operators on V, prove that each eigenspace of S is mapped into itself by T.

(2) Let A_1, \cdots, A_k be finitely many linear operators on V that commute pairwise. Prove that they have a common eigenvector in V.

(3) If V has dimension n, show that there exists a nested sequence of subspaces

$$0 = V_0 \subset V_1 \subset \cdots \subset V_n = V,$$

where each V_j has dimension j and is mapped into itself by each of the operators A_1, \cdots, A_k.
7. Let A be an $n \times n$ matrix with complex coefficients and assume that every eigenvalue λ of A satisfies $\text{Im}(\lambda) > 0$. Consider the $(2n) \times (2n)$ matrix

$$B = \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$$

Find the invariant factors of B in terms of invariant factors of A and prove that B is similar to a real valued matrix.
8. Find the Galois group of $x^6 - 2$ over \mathbb{Q} and \mathbb{F}_5.
9. Let K/F be a finite Galois algebraic extension with no proper intermediate fields. Prove that $[K : F]$ is prime.
10. Let Q denote the quaternion group, i.e.

$$Q = \{ \pm 1, \pm i, \pm j, \pm k \}$$

with $i^2 = j^2 = k^2 = ijk = -1$, $-1 \in Z(Q)$ and $(-1)^2 = 1$.

(1) Classify the conjugacy classes of Q
(2) Construct the character table of Q.