Qualifying Exam

Thursday, September 20, 2018 — 1:00 pm -3:30 pm, Rowland Hall 114

Problem	1	2	3	4	5	6	7	8	9	Σ
Points										

Math Exam ID #:

Math Exam ID #:

1. Let *f* be an analytic function on $D(z_0, r) \setminus \{z_0\}$, where r > 0, such that $f(z) \neq 0$ for all $z \in D(z_0, r) \setminus \{z_0\}$. Consider the analytic function $g(z) = \frac{1}{f(z)}$ for $z \in D(z_0, r) \setminus \{z_0\}$. Prove that *f* has an essential singularity at z_0 if and only if *g* has an essential singularity at z_0 .

2. Let f and g be entire functions. Suppose that

(a) $g(z) \neq 0$ for all $z \in \mathbb{C}$,

(b) $|f(z)| \leq |z^7 g(z)|$ for all $z \in \mathbb{C}$.

Prove that there exists $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$ such that $f(z) = \alpha z^7 g(z)$ for all $z \in \mathbb{C}$.

Math Exam ID #:

3. Let $\{f_n\}$ be a uniformly bounded sequence of analytic functions on the open unit disc D(0,1). Suppose $\lim_{n\to\infty} f_n(\frac{1}{k})$ exists for k = 1, 2, ... Prove that there exists an analytic function f on D(0,1) such that $f_n \to f$ uniformly on compact subsets of D(0,1).

4. Find the number of solutions with multiplicity of $e^z = 7z^9$ in the open unit disc around the origin.

5. Evaluate
$$\int_{\gamma} \frac{1+z}{1-\cos(z)} dz$$
, where

- (a) γ is the circle of radius 5 around 0, counterclockwise.
- (b) γ is the circle of radius 7 around 0, counterclockwise.

Math Exam ID #:

6. Find a surjective holomorphic map φ from the open unit disc D = D(0, 1) to the punctured disc $D^* = D \setminus \{0\}$, with $\varphi'(z) \neq 0$ for any $z \in D$. 7. Let $f: \{z | |z| > 0\} \to \mathbb{C}$ be analytic. Furthermore suppose that $\lim_{z\to\infty} f(z) = 0$. Show that for |z| > 1, one has

$$\frac{1}{2\pi i} \int_{\eta=1} \frac{f(\eta)}{\eta-z} = -f(z).$$

8. Suppose $f: D(0,1) \rightarrow D(0,1)$ is a holomorphic mapping such that $f(0) = \frac{1}{5}$. Give an upper bound for |f'(0)|, and characterize the functions for which the upper bound is an equality.

9. Let $u = \log(x^2 + y^2)$.

(a) Find all harmonic conjugates of u in an open ball of radius 1 centered at 1.

(b) Prove that there is no harmonic conjugate of u in $U \setminus \{0\}$, where U is any open set containing 0.