Complex Analysis

Qualifying Exam

Thursday, September 20, 2018 - 1:00 pm -3:30 pm, Rowland Hall 114

Problem	1	2	3	4	5	6	7	8	9	Σ
Points										

Math Exam ID \#:

1. Let f be an analytic function on $D\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$, where $r>0$, such that $f(z) \neq 0$ for all $z \in D\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$. Consider the analytic function $g(z)=\frac{1}{f(z)}$ for $z \in D\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$. Prove that f has an essential singularity at z_{0} if and only if g has an essential singularity at z_{0}.

Math Exam ID \#:

2. Let f and g be entire functions. Suppose that
(a) $g(z) \neq 0$ for all $z \in \mathbb{C}$,
(b) $|f(z)| \leq\left|z^{7} g(z)\right|$ for all $z \in \mathbb{C}$.

Prove that there exists $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$ such that $f(z)=\alpha z^{7} g(z)$ for all $z \in \mathbb{C}$.

Math Exam ID \#:

3. Let $\left\{f_{n}\right\}$ be a uniformly bounded sequence of analytic functions on the open unit disc $D(0,1)$. Suppose $\lim _{n \rightarrow \infty} f_{n}\left(\frac{1}{k}\right)$ exists for $k=1,2, \ldots$. Prove that there exists an analytic function f on $D(0,1)$ such that $f_{n} \rightarrow f$ uniformly on compact subsets of $D(0,1)$.

Math Exam ID \#:
4. Find the number of solutions with multiplicity of $e^{z}=7 z^{9}$ in the open unit disc around the origin.

Math Exam ID \#:

5. Evaluate $\int_{\gamma} \frac{1+z}{1-\cos (z)} d z$, where
(a) γ is the circle of radius 5 around 0 , counterclockwise.
(b) γ is the circle of radius 7 around 0 , counterclockwise.

Math Exam ID \#:

6. Find a surjective holomorphic map φ from the open unit disc $D=D(0,1)$ to the punctured disc $D^{*}=D \backslash\{0\}$, with $\varphi^{\prime}(z) \neq 0$ for any $z \in D$.

Math Exam ID \#:

7. Let $f:\{z| | z \mid>0\} \rightarrow \mathbb{C}$ be analytic. Furthermore suppose that $\lim _{z \rightarrow \infty} f(z)=0$. Show that for $|z|>1$, one has

$$
\frac{1}{2 \pi i} \int_{\eta=1} \frac{f(\eta)}{\eta-z}=-f(z)
$$

Math Exam ID \#:

8. Suppose $f: D(0,1) \rightarrow D(0,1)$ is a holomorphic mapping such that $f(0)=\frac{1}{5}$. Give an upper bound for $\left|f^{\prime}(0)\right|$, and characterize the functions for which the upper bound is an equality.

Math Exam ID \#:

9. Let $u=\log \left(x^{2}+y^{2}\right)$.
(a) Find all harmonic conjugates of u in an open ball of radius 1 centered at 1.
(b) Prove that there is no harmonic conjugate of u in $U \backslash\{0\}$, where U is any open set containing 0 .
