Real Analysis Qualifying Exam Fall 2018

September 21, 2018

Student's math exam ID\#: \qquad

INSTRUCTIONS: Do all work on the sheets provided. There is a blank page following each problem. Please do not use the back of the sheets in your solutions.

Problem	Point Value	Points Received
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	$\mathbf{6 0}$	

Student's math exam ID\#:

Problem 1 (10 points) Let $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}, k=1,2, \ldots$, be a sequence of Lebesgue measurable functions. Prove that the set of points $x \in \mathbb{R}^{n}$ for which the sequence $\left(f_{k}(x)\right)_{k=1}^{\infty}$ fails to converge as $k \rightarrow \infty$ is Lebesgue measurable.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 2 (10 points) Let $f:[0,1] \rightarrow \mathbb{R}$ be absolutely continuous. Suppose that $f(0)=0$ and $f^{\prime} \in L^{p}([0,1])$ for some $1<p<\infty$. Show that for any $g \in L^{p^{\prime}}([0,1]), \frac{1}{p}+\frac{1}{p^{\prime}}=1$, we have

$$
\|f g\|_{L^{1}([0,1])} \leq\left(\frac{1}{p}\right)^{1 / p}\left\|f^{\prime}\right\|_{L^{p}([0,1])}\|g\|_{L^{p^{\prime}([0,1])}}
$$

Student's math exam ID\#:

Student's math exam ID\#:

Problem 3 (10 points) Let $\left(f_{k}\right)_{k=1}^{\infty}$ be a sequence of functions in $L^{p}\left(\mathbb{R}^{n}\right)$, for some $1<p<\infty$, such that $\left\|f_{k}\right\|_{L^{p}} \leq 2018, k=1,2, \ldots$ Suppose that $f_{k} \rightarrow f$ almost everywhere on \mathbb{R}^{n} as $k \rightarrow \infty$. Show that
(a) $f \in L^{p}\left(\mathbb{R}^{n}\right)$,
(b) $f_{k} \rightarrow f$ weakly as $k \rightarrow \infty$, i.e. for any $g \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right), \frac{1}{p}+\frac{1}{p^{\prime}}=1$,

$$
\int f_{k} g d x \rightarrow \int f g d x
$$

Student's math exam ID\#:

Student's math exam ID\#:

Problem 4 (10 points) Let $f \in L^{2}([0,1])$ be such that

$$
\int_{0}^{1} f(x) g(x) d x=0
$$

for all $g \in C([0,1])$ with the property that

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} x g(x) d x=0
$$

Prove that there are $a, b \in \mathbb{C}$ such that $f(x)=a x+b$ for almost all $x \in[0,1]$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 5 (10 points) Let $f \in L^{1}(\mathbb{R})$. Show that the series

$$
\sum_{n=1}^{\infty} f(n x)
$$

converges absolutely for almost all $x \in \mathbb{R}$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 6 (10 points) Let $F \subset \mathbb{R}^{n}$ be a closed set with $m\left(F^{c}\right)<\infty$, where m is the Lebesgue measure and $F^{c}=\mathbb{R}^{n} \backslash F$. Set

$$
M(x)=\int_{\mathbb{R}^{n}} \frac{d(y, F)}{|x-y|^{n+1}} d y
$$

where $d(y, F)=\inf _{x \in F}|y-x|$ is the Euclidean distance from y to F. Show that $M(x)<\infty$ for almost all $x \in F$ and $M(x)=\infty$ for all $x \in F^{c}$.

Student's math exam ID\#:

