Real Analysis Qualifying Exam Fall 2019

September 20, 2019

Student's math exam ID\#: \qquad

INSTRUCTIONS: Do all work on the sheets provided. There is a blank page following each problem. Please do not use the back of the sheets in your solutions.

Problem	Point Value	Points Received
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	$\mathbf{6 0}$	

Student's math exam ID\#:

Problem 1 (10 points) Let $\Omega \subset \mathbb{R}^{n}$ be a compact set. Suppose we are taking the Lebesgue measure. Solve 3 of the following problems
(a) Prove or disprove that necessarily $L^{4}(\Omega) \subset L^{3}(\Omega)$.
(b) Prove or disprove that necessarily $L^{3}(\Omega) \subset L^{4}(\Omega)$.
(c) Prove or disprove that necessarily $L^{4}\left(\mathbb{R}^{n}\right) \subset L^{3}\left(\mathbb{R}^{n}\right)$.
(d) Prove or disprove that necessarily $L^{3}\left(\mathbb{R}^{n}\right) \subset L^{4}\left(\mathbb{R}^{n}\right)$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 2 (10 points) Let E_{n} be a sequence of measurable sets in (X, μ) and

$$
A=\left\{x \in X: x \in E_{n} \text { for infinitely many } n\right\}
$$

(a) Assume $\mu\left(E_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Prove or disprove that necessarily $\mu(A)=0$.
(b) Suppose there exists an infinite subsequence $\left\{E_{n_{i}}\right\}$ such that $\mu\left(E_{n_{i}}\right)>\frac{1}{2}$. Prove or disprove that necessarily $\mu(A)>0$. Discuss separately the cases of finite and infinite μ.

Student's math exam ID\#:

Student's math exam ID\#: \qquad

Problem 3 (10 points) Let μ be a finite measure on \mathbb{R} and define

$$
f(x)=\int_{\mathbb{R}} \frac{\ln |x-t|}{|x-t|^{1 / 2}} d \mu(t), \quad x \in \mathbb{R}
$$

Prove that $f(x)$ is finite λ-a.e. for $x \in \mathbb{R}$. Here λ denotes the Lebesgue measure on \mathbb{R}.

Student's math exam ID\#:

Student's math exam ID\#: \qquad

Problem 4 (10 points) Let f be an absolutely continuous function on \mathbb{R} such that $f \in L^{1}(\mathbb{R})$. Suppose that

$$
\lim _{t \rightarrow 0^{+}} \int_{\mathbb{R}}\left|\frac{f(x+t)-f(x)}{t}\right| d x=0 .
$$

Prove that $f \equiv 0$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 5 (10 points) Let (X, μ) be a measure space and suppose that f_{n} : $X \rightarrow \mathbb{R}$ is a sequence of measurable functions such that

$$
\sup _{n} \int_{X}\left|f_{n}\right|^{2} d \mu<+\infty
$$

and $\lim _{n \rightarrow \infty} \int_{X}\left(f_{n} \cdot g\right) d \mu$ exists and is finite for any $g \in L^{2}(X, \mu)$.
(a) Prove that there exists $f \in L^{2}(X, \mu)$ such that

$$
\lim _{n \rightarrow \infty} \int_{X}\left(f_{n} \cdot g\right) d \mu=\int_{X}(f \cdot g) d \mu, \quad \text { for } \forall g \in L^{2}(X, \mu)
$$

(b) Prove that, for the f in part a), we have

$$
\int_{X}|f|^{2} d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|^{2} d \mu
$$

Student's math exam ID\#:

Student's math exam ID\#: \qquad

Problem 6 (10 points)
(a) Suppose $f \in L^{2}(\mathbb{R})$. Show that

$$
\sum_{n=1}^{\infty} \frac{f(x+n)}{n^{3 / 4}}<\infty \text { for a.e. } x \in \mathbb{R} .
$$

(b) Give an example of $f \in L^{4}(\mathbb{R})$ such that

$$
\sum_{n=1}^{\infty} \frac{f(x+n)}{n^{3 / 4}}=\infty \text { for } \forall x \in \mathbb{R}
$$

Student's math exam ID\#:

