Print Your Name: last first
Print Your I.D. Number:

Qualifying Examination, September 19, 2019
1:00 PM - 3: 30 PM, Room RH 306

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 —$ / 10
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 —$ / 10
Problem $7 — / 10$
Problem $8-/ 10$

Total $\quad / 80$

Notation:

C denotes the complex plane; $i=\sqrt{-1}$;
\mathbf{R} is the set of all real numbers; \mathbf{Z} is the set of all integers;
$D\left(z_{0}, r\right)$ denotes the open disc in \mathbf{C} centered at z_{0} and radius r; $U=\{z=x+i y: y>0\}$ is the upper half plane in \mathbf{C}.

1. Complete the following parts.
(a) Find all points where the function $f(z)=\bar{z}^{2}+3 \bar{z}$ is analytic
(b) Let D be a domain in \mathbf{C} and let f be C^{1} function on D such that

$$
\int_{\partial D\left(z_{0}, r\right)} f(z) d z=0
$$

for any $z_{0} \in D$ and $0<r<\delta\left(z_{0}\right)=\operatorname{dist}\left(z_{0}, \partial D\right)$. Prove f is holomorphic in D.
2. Let $f: D(0,1) \rightarrow D(0,1)$ be holomorphic such that $f(0)=5^{-20}$. Give a sharp estimate for number of zeros of f on $\overline{D\left(0, \frac{1}{5}\right)}$.
3. Given a series

$$
\sum_{n=1}^{\infty}\left(\frac{2019+i}{2019-i}\right)^{n^{2}} \cdot\left(\frac{z-2019}{z+2019}\right)^{n}
$$

(i) Find all complex numbers z such that the series converges absolutely;
(ii) Find all complex numbers z such that the series convergence.
4. Prove that

$$
\int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8}
$$

5. Prove or disprove: there exist a sequence of holomorphic functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ on $D(0,1)$ such that $f_{n}(z) \rightarrow|z|^{2}$ uniformly on a non-empty open subset of $D(0,1)$.
6. Suppose that f is a non-constant entire function which satisfying

$$
|f(z)| \geq 1 \text { when }|z| \geq 10
$$

Prove that f is a polynomial.
7. Let $f: D(0,1) \rightarrow D(0,1)$ be a proper holomorphic map such that $f(z)$ is continuous on $\overline{D(0,1)}$. Prove f is a rational function.
8. (a) Prove

$$
f(z)=\sum_{k=-\infty}^{\infty} \frac{1}{(k+z)^{2}}-\frac{\pi^{2}}{\sin ^{2}(\pi z)}
$$

is entire holomorphic.
(b) Prove

$$
\sum_{k=-\infty}^{\infty} \frac{1}{(k+z)^{2}}=\frac{\pi^{2}}{\sin ^{2}(\pi z)}, \quad z \notin \mathbf{Z}
$$

(Problem 8 continued)

