ALGEBRA QUALIFYING EXAM Fall 2019 QUESTIONS

1. Do there exist groups G, H such that Q_8 is a semi-direct product of G and H?

2. Let G be a finite group of order $p^2 \cdot q$ where p < q are primes. Prove that either G has a normal Sylow q-subgroup or G is isomorphic to A_4 , the alternating group on 4 letters.

3. Let R be a ring with $1 \neq 0$. Let N(R) be the set of all nilpotent elements of R. Prove the following.

- (a) If R is commutative then N(R) is an ideal of R and is equal to the intersection of all prime ideals of R.
- (b) Give an example of a non-commutative ring R such that N(R) is **not** an ideal of R.

4. Work with the ring $\mathbb{Z}[\sqrt{2}]$.

- (a) Is $3 + \sqrt{2}$ a prime in $\mathbb{Z}[\sqrt{2}]$?
- (b) Identify the quotient $\mathbb{Z}/(3+\sqrt{2})$. Which ring it is?

You may use the fact that $\mathbb{Z}[\sqrt{2}]$ has a Euclidean norm.

5. Let R be a commutative ring with $1 \neq 0$. Consider two maximal ideals $I \neq J$ of R.

- (a) Prove that every element of $R/(I \cap J)$ is either a unit or a zero divisor.
- (b) Prove that $R/(I \cap J)$ always has a unit and at least two zero divisors.
- (c) Prove that $R/(I \cap J)$ has infinitely many units if and only if it has infinitely many zero divisors.

Recall that a maximal ideal of R is, by definition, a proper ideal of R.

6. Assume $F \leq K \leq L$ are field extensions such that both K/F and L/K are algebraic. Prove that L/F is algebraic.

7. Calculate the Galois group of $x^4 - 3x^2 + 4$ over \mathbb{Q} .

8. Let $K \subseteq \mathbb{C}$ be a field extension of \mathbb{Q} such that $Gal(K/\mathbb{Q})$ is cyclic of order 4. Prove that $i \notin K$.

9. Let V be a finite dimensional vector space over \mathbb{F}_2 and let $T: V \to V$ be a linear transformation such that $T^5 = I$ but $T \neq I$.

- (a) What are the possible degrees of the minimal polynomial of T?
- (b) Assume there are non-simular linear transformation $S, T : V \to V$ such that $S^5 = I = T^5$ but $S \neq I \neq T$. What is the smallest possible dimension of V?

10. Prove that if A is a square matrix over \mathbb{C} then A and its transpose A^T are conjugate over \mathbb{C} .