ALGEBRA QUALIFYING EXAM Fall 2019 QUESTIONS

1. Do there exist groups G, H such that Q_{8} is a semi-direct product of G and H ?
2. Let G be a finite group of order $p^{2} \cdot q$ where $p<q$ are primes. Prove that either G has a normal Sylow q-subgroup or G is isomorphic to A_{4}, the alternating group on 4 letters.
3. Let R be a ring with $1 \neq 0$. Let $N(R)$ be the set of all nilpotent elements of R. Prove the following.
(a) If R is commutative then $N(R)$ is an ideal of R and is equal to the intersection of all prime ideals of R.
(b) Give an example of a non-commutative ring R such that $N(R)$ is not an ideal of R.
4. Work with the ring $\mathbb{Z}[\sqrt{2}]$.
(a) Is $3+\sqrt{2}$ a prime in $\mathbb{Z}[\sqrt{2}]$?
(b) Identify the quotient $\mathbb{Z} /(3+\sqrt{2})$. Which ring it is?

You may use the fact that $\mathbb{Z}[\sqrt{2}]$ has a Euclidean norm.
5. Let R be a commutative ring with $1 \neq 0$. Consider two maximal ideals $I \neq J$ of R.
(a) Prove that every element of $R /(I \cap J)$ is either a unit or a zero divisor.
(b) Prove that $R /(I \cap J)$ always has a unit and at least two zero divisors.
(c) Prove that $R /(I \cap J)$ has infinitely many units if and only if it has infinitely many zero divisors.
Recall that a maximal ideal of R is, by definition, a proper ideal of R.
6. Assume $F \leq K \leq L$ are field extensions such that both K / F and L / K are algebraic. Prove that L / F is algebraic.
7. Calculate the Galois group of $x^{4}-3 x^{2}+4$ over \mathbb{Q}.
8. Let $K \subseteq \mathbb{C}$ be a field extension of \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q})$ is cyclic of order 4 . Prove that $i \notin K$.
9. Let V be a finite dimensional vector space over \mathbb{F}_{2} and let $T: V \rightarrow V$ be a linear transformation such that $T^{5}=I$ but $T \neq I$.
(a) What are the possible degrees of the minimal polynomial of T ?
(b) Assume there are non-simular linear transformation $S, T: V \rightarrow V$ such that $S^{5}=I=T^{5}$ but $S \neq I \neq T$. What is the smallest possible dimension of V ?
10. Prove that if A is a square matrix over \mathbb{C} then A and its transpose A^{T} are conjugate over \mathbb{C}.

