Qualifying Exam

Monday, January 4, 2021 — 4:00 pm - 6:30 pm

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Math Exam ID #:

Problem 1.

For every $a \in \mathbb{R}$ find all solutions of the equation

 $|z|^2 + 2iz + 2a(1+i) = 0$

Problem 2.

Evaluate $\int_{\gamma} f(z)dz$, if $f(z) = \frac{1}{(z-1)(iz-5)}$, and $\gamma(t) = 3e^{2\pi it} + e^{6\pi it}$, $t \in [0, 1]$.

Problem 3.

Let the sequence a_0, a_2, a_3, \ldots be defined by the equation

$$1 + x^{3} + x^{6} + x^{9} + \ldots = \sum_{n=0}^{\infty} a_{n} \left(x + \frac{1}{2} \right)^{n}, \quad (-1 < x < 0)$$

Find $\limsup_{n\to\infty}(|a_n|^{\frac{1}{n}})$.

Problem 4.

a) Suppose $f : \mathbb{C} \to \mathbb{C}$ is a function such that both f^{2020} and f^{2021} are entire functions. Prove that f is an entire function.

b) Suppose $f : \mathbb{C} \to \mathbb{C}$ is a function such that both f^{2020} and f^{2022} are entire functions. Does it imply that f is an entire function? Explain your answer.

Problem 5.

Let *f* be analytic in $\mathbb{C}\setminus\{0,2\}$, have a simple pole with residue -1 at z = 0, and a simple pole with residue 1 at z = 2. Prove that for any K > 0 we have

$$\lim_{n \to \infty} K^n \left| \frac{f^{(n)}(1)}{n!} + 1 + (-1)^n \right| = 0$$

Problem 6.

How many roots does the function $f(z) = z^{2020} + z^{10} + 1$ have in the first quadrant?

Problem 7.

Find explicitly a conformal mapping that sends a domain

 $U = \{ x + iy \mid 0 < x < 1, \ y > 0 \}$

on the complex plane to the unit disc.

Problem 8.

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function, and set $g_a(z) = f\left(\left(\frac{z}{a}\right)^{\lfloor a \rfloor}\right)$, a > 1, where $\lfloor a \rfloor$ is the greatest integer less than or equal to a. Prove that $\{g_a\}_{a \in (1,+\infty)}, g_a : \mathbb{C} \to \mathbb{C}$, is a normal family.