Real Analysis Qualifying Exam Spring 2019

June 18, 2019

Student's math exam ID\#: \qquad

INSTRUCTIONS: Do all work on the sheets provided. There is a blank page following each problem. Please do not use the back of the sheets in your solutions.

Problem	Point Value	Points Received
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	$\mathbf{6 0}$	

Student's math exam ID\#:

Problem 1 (10 points) Let f_{n} be a sequence of functions in $L^{\infty}([0,1])$ that converge to a function $f \in L^{\infty}([0,1])$ in $L^{2}([0,1])$. Prove, or disprove by example, that:
(a) f_{n} converge to f in $L^{1}([0,1])$,
(b) f_{n} converge to f in $L^{3}([0,1])$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 2 (10 points) (a) Show that any sequence f_{n} of non-negative integrable functions on $[0,1]$ with

$$
\int_{0}^{1} f_{n}^{3} d x \leq \frac{1}{n^{2}}
$$

must converge to zero almost everywhere.
(b) Is there a sequence g_{n} of non-negative integrable functions on $[0,1]$ satisfying

$$
\int_{0}^{1} g_{n}^{3} d x \rightarrow 0
$$

which does not converge to zero almost everywhere? Explain.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 3 (10 points) Assume that ν and μ are two finite positive measures on a measure space (X, M). Prove that ν is absolutely continuous with respect to μ if and only if $\lim _{n \rightarrow \infty}(\nu-n \mu)_{+}=0$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 4 (10 points) We say a function $f:[-1,1] \rightarrow \mathbb{R}$ is convex if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for all $t \in[0,1]$ and $x, y \in[-1,1]$.
(a) Let $f(x)$ be a C^{1} convex function on $[-1,1]$. Show that $f^{\prime \prime}$ exists Lebesgue almost everywhere.
(b) Does there exist a C^{1} convex function f on $[-1,1]$ such that $f^{\prime \prime}$ equals zero almost everywhere, but f is not linear? Either construct or prove it is impossible.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 5 (10 points) Let $f \in L^{1}(\mathbb{R})$ and let g be the 1-periodic function on \mathbb{R} with $g(x)=1-2 x$ for $0 \leq x<1$. Show that

$$
\lim _{t \rightarrow \infty} \int_{\mathbb{R}} f(x) g(x \sqrt{t}) d x=0
$$

Student's math exam ID\#:

Student's math exam ID\#: \qquad

Problem 6 (10 points) Let f be a twice continuously differentiable function on \mathbb{R} with compact support. Show that

$$
\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})} \leq \frac{1}{2}\left(\|f\|_{L^{2}(\mathbb{R})}+\left\|f^{\prime \prime}\right\|_{L^{2}(\mathbb{R})}\right)
$$

Student's math exam ID\#:

