Qualifying Examination

Math Exam ID Number:

\qquad

The exam consists of six problem. Solve as many as you can by giving complete arguments and providing explicit justification. Show all your work. Each problem is worth 5 points.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Math Exam ID Number:

Problem 1

Let (X, \mathcal{B}, μ) be a measure space and $\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence in $L^{1}(\mu)$ that converges a.e. to $f \in L^{1}(\mu)$. Prove that $f_{n} \rightarrow f$ in $L^{1}(\mu)$ as $n \rightarrow \infty$ if and only if $\int\left|f_{n}\right| d \mu \rightarrow \int|f| d \mu$ as $n \rightarrow \infty$.

Math Exam ID Number:

Math Exam ID Number:

\qquad

Problem 2

Suppose that (X, \mathcal{B}, μ) is a probability space and \mathcal{C} is a σ-subalgebra of \mathcal{B}. Further suppose that $f \in L^{1}(X, \mathcal{B}, \mu)$.
(a) Prove that there is a unique $g \in L^{1}(X, \mathcal{C}, \mu)$ such that $\int_{A} f d \mu=\int_{A} g d \mu$ for all $A \in \mathcal{C}$.
(b) Suppose that $f=\chi_{B}$ for some $B \in \mathcal{B}$ and that $\mathcal{C}=\left\{\emptyset, C, C^{c}, X\right\}$ for some $C \in \mathcal{B}$ with $\mu(C) \in(0,1)$. Write an explicit formula for the function g from part (a) in this case. Make sure to justify your answer.

Math Exam ID Number:

Math Exam ID Number:

Problem 3

Let $f \in \mathrm{~L}_{l o c}^{1}\left(\mathbb{R}^{n}\right), p \in(0,1)$, and assume that

$$
\left|\int f g d x\right| \leq\left(\int|g|^{p}\right)^{1 / p} \quad \forall g \in \mathrm{C}_{c}\left(\mathbb{R}^{n}\right) .
$$

Conclude that $f=0$ a.e.
[Hint: Show that the inequality extends to characteristic functions of balls.]

Math Exam ID Number:

Math Exam ID Number:

Problem 4

Let ν_{1}, ν_{2} be finite signed measures on a measurable space (X, \mathcal{M}) and show that

$$
\left|\nu_{1}+\nu_{2}\right|(E) \leq\left|\nu_{1}\right|(E)+\left|\nu_{2}\right|(E) \text { for } E \in \mathcal{M} .
$$

Also prove the inequality can be strict.

Math Exam ID Number:

Math Exam ID Number:

Problem 5
Let $f \in \mathrm{~L}^{4}(\mathbb{R})$ and show that

$$
\lim _{c \rightarrow 1} \int|f(c x)-f(x)|^{4} d x=0
$$

Math Exam ID Number:

Math Exam ID Number:

Problem 6

Let $E_{1}, \ldots, E_{10} \subset[0,1]$ be the Lebesgue measurable sets. Suppose that each $x \in[0,1]$ belongs to at least 5 of these sets (which 5 can vary with x). Prove that $\lambda\left(E_{m}\right) \geq 1 / 2$ for some $m \in\{1, \ldots, 10\}$, where λ is the Lebesgue measure on the real line.

Math Exam ID Number:

