Print Your Name: last \longrightarrow first

Print Your I.D. Number: \qquad

Real Analysis Qualifying Examination, Tuesday, September 19, 2023
1:00 PM - 3:30 PM, Room RH 306

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 — / 10$
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 \longrightarrow / 10$

Total $\quad / 60$

1. Let f be a positive continuous function on $[0,1]$. Prove that

$$
\lim _{p \rightarrow \infty}\|f\|_{L^{p}([0,1])}=\|f\|_{L^{\infty}([0,1])} .
$$

2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous and $g:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous and strictly monotonic. Prove that $f \circ g:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous.
3. Suppose that $f \in L^{\infty}(0,1)$ is such that

$$
\int_{(0,1)} g^{\prime}(x) f(x) d x=0
$$

for every absolutely continuous function g on $[0,1]$ for which $g(0)=g(1)=0$. Prove that f equals to a constant almost everywhere.
4. Fix $f \in L^{6 / 5}(\mathbb{R})$ and $g \in L^{6}(\mathbb{R})$. Let h be the function on \mathbb{R} defined by

$$
h(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Prove that h is continuous.
5. Fix $1 \leq p \leq \infty$ and $f \in L^{p}(\mathbb{R})$. Show that

$$
\int_{-\infty}^{\infty} \frac{|f(t)|}{1+t^{2}} d t<\infty
$$

6. Fix $f \in L^{1}(\mathbb{R})$. Show that the series

$$
\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} f(x+\sqrt{k})
$$

converges absolutely for almost every $x \in \mathbb{R}$.

