Print Your Name:	last	first

Print Your I.D. Number: _____

Real Analysis Qualifying Examination, Tuesday, September 19, 2023 $1{:}00~{\rm PM}-3{:}30~{\rm PM},\,{\rm Room}~{\rm RH}~306$

Table of your scores

Problem 1 ———/ 10
Problem 2 ———/ 10
Problem 3 ———/ 10
Problem 4 ———/ 10
Problem 5 ———/ 10
Problem 6 ———/ 10
Total ————/ 60

1. Let f be a positive continuous function on [0, 1]. Prove that

 $\lim_{p \to \infty} \|f\|_{L^p([0,1])} = \|f\|_{L^\infty([0,1])}.$

2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is absolutely continuous and $g : [a, b] \to \mathbb{R}$ is absolutely continuous and strictly monotonic. Prove that $f \circ g : [a, b] \to \mathbb{R}$ is absolutely continuous.

3. Suppose that $f \in L^{\infty}(0,1)$ is such that

$$\int_{(0,1)} g'(x)f(x) \, dx = 0$$

for every absolutely continuous function g on [0, 1] for which g(0) = g(1) = 0. Prove that f equals to a constant almost everywhere. **4.** Fix $f \in L^{6/5}(\mathbb{R})$ and $g \in L^6(\mathbb{R})$. Let h be the function on \mathbb{R} defined by

$$h(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy.$$

Prove that h is continuous.

5. Fix $1 \leq p \leq \infty$ and $f \in L^p(\mathbb{R})$. Show that

$$\int_{-\infty}^{\infty} \frac{|f(t)|}{1+t^2} \, dt < \infty.$$

6. Fix $f \in L^1(\mathbb{R})$. Show that the series

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} f(x + \sqrt{k})$$

converges absolutely for almost every $x \in \mathbb{R}$.