Real Analysis Qualifying Exam

June 18, 2024

Student's math exam ID#:	
--------------------------	--

INSTRUCTIONS: Do all work on the sheets provided. There is a blank page following each problem. Please do not use the back of the sheets in your solutions.

Problem	Point Value	Points Received
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Student's math exam ID#: _____

Problem 1 (10 points)

Assume that $f \in L^2(\mathbb{R})$. Let $F(x) = \int_0^x f(t) dt$. Show that

$$\lim_{x \to \infty} \frac{F(x)}{\sqrt{x}} = 0.$$

Student's math exam ID#:	
--------------------------	--

Student's math exam ID#:

Problem 2 (10 points)

Suppose that f(x) and $\{f_n(x)\}_{n\geq 1}$ are non-negative integrable functions on \mathbb{R} . Assume further that

$$\lim_{n\to\infty} f_n(x) = f(x) \quad \text{a.e.} \quad \text{and} \quad \lim_{n\to\infty} \int_{\mathbb{R}} f_n(x) \, dx = \int_{\mathbb{R}} f(x) \, dx.$$

Prove that for any measurable set $E \subset \mathbb{R}$,

$$\lim_{n \to \infty} \int_E f_n(x) \, dx = \int_E f(x) \, dx.$$

Student's math exam ID#:	
--------------------------	--

Problem 3 (10 points)

Let $f:[0,1]\to\mathbb{R}$ be non-decreasing. Recalling that this assumption implies that f'(x) exists for almost all $x\in[0,1]$ (with respect to Lebesgue measure dx), prove that $\int_0^1 f'(x)dx \leq f(1) - f(0)$.

Student's math exam ID#: _	
----------------------------	--

Student's math exam ID#:

Problem 4 (10 points)

Suppose that (X, \mathcal{B}, μ) is a measure space and $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are integrable. For each $t \in \mathbb{R}$, set $A_t := \{x \in X : f(x) > t\}$ and $B_t := \{x \in X : g(x) > t\}$.

Part a: Assume that (X, \mathcal{B}, μ) is σ -finite. Prove that

$$\int_{X} |f - g| d\mu = \int_{-\infty}^{\infty} \mu(A_t \triangle B_t) dt.$$

Here, for subsets C and D of a set Y, $C \triangle D := (C \setminus D) \cup (D \setminus C)$ denotes their symmetric difference.

Part b: Show that the conclusion of part (a) holds even if (X, \mathcal{B}, μ) is not σ -finite.

Student's math exam ID#:	
--------------------------	--

Student's math exam ID#:

Problem 5 (10 points)

For $x \in \mathbb{R}$ and t > 0, let $\rho(x) := \max\{1 - |x|, 0\}$ and $\rho_t(x) := t\rho(tx)$.

Part a: Let u be a continuous function on \mathbb{R} that vanishes outside of a compact set. Prove that the functions $u_t(x) := \int_{\mathbb{R}} \rho_t(x-y)u(y) \, dy$ converge uniformly to u on \mathbb{R} as $t \to \infty$.

Part b: Let $u \in L^p(\mathbb{R})$ for some $p \in [1, \infty)$. Prove that the functions $u_t(x) := \int_{\mathbb{R}} \rho_t(x-y)u(y) \, dy$ converge to u in $L^p(\mathbb{R})$ as $t \to \infty$.

Student's math exam ID#:	
--------------------------	--

Student's math exam ID#: _____

Problem 6 (10 points)

Suppose $E \subset \mathbb{R}$ is a (Lebesgue) measurable subset. For all $x \in \mathbb{R}$, define $d(x, E) = \inf_{y \in E} |x - y|$. Prove that for a.e. $x \in E$,

$$\lim_{y\to 0}\frac{d(x+y,E)}{|y|}=0.$$

Student's math exam ID#:	
--------------------------	--