Real Analysis Qualifying Exam

January 2021
There are 6 problems on the exam. Each problem is worth 10 points. Do as many as you can.
Show your work and justify your answers.

Problem 1: A.) Give an example of a sequence $\left\{f_{n}\right\}_{n}$ of Lebesgue measurable functions on $[0,1]$ that does not converge to zero almost everywhere, but nonetheless

$$
\int_{0}^{1} f_{n}^{10} d x \rightarrow 0
$$

B.) Is there such an example if one assumes that

$$
\int_{0}^{1} f_{n}^{10} d x \leq \frac{1}{n^{10}} ?
$$

Give an example or prove there isn't one.

Problem 2: A.) Give an example of a measure μ on the unit interval that differs from Lebesgue measure such that:
(i) $\mu([0,1])=1$,
(ii) Every Borel set is μ-measurable,
(iii) If $x \in[0,1]$, then $\mu(\{x\})=0$.
(iv) If $(a, b) \subseteq[0,1]$ and $a \neq b$ then $\mu((a, b)) \neq 0$.
B.) Show that for all measures μ on the unit interval satisfying properties (i-iv) there is a measure ν on the unit square $[0,1] \times[0,1]$ such that
(a) $\nu([0,1] \times[0,1])=1$,
(b) Every Borel set is ν-measurable
(c) If $(x, y) \in[0,1] \times[0,1]$ then $\nu(\{(x, y)\})=0$
(d) For $A \subseteq[0,1]$

$$
\nu(A \times[0,1])=\mu(A)
$$

Define the measure and prove it has properties (a)-(d).

Problem 3: Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be the measure spaces given by:

- $X=Y=[0,1]$.
- $\mathcal{A}=\mathcal{B}=\mathcal{B}_{[0,1]}$, the Borel σ-algebra of $[0,1]$.
- $\mu=\mu_{L}$ (Lebesgue measure) and ν is the counting measure.

Consider the product measurable space $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}))$ and a subset of it defined by $E=\{(x, y) \in X \times Y ; x=y\}$. Then, show that

1. $E \in \sigma(\mathcal{A} \times \mathcal{B})$.
2. $\int_{X}\left\{\int_{Y} \mathbf{1}_{E} d \nu\right\} d \mu \neq \int_{Y}\left\{\int_{X} \mathbf{1}_{E} d \mu\right\} d \nu$.
3. Why is Tonelli's Theorem not applicable?

Problem 4: Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ-finite measure spaces, and consider the product measure space $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$. Let f be a real-valued, \mathcal{A}-measurable and μ-integrable function on X and g a real-valued, \mathcal{B}-measurable and ν-integrable function on Y. Consider the real-valued function on $X \times Y$ given by $h(x, y)=f(x) g(y)$. Show that h is a $\sigma(\mathcal{A} \times \mathcal{B})$-measurable and $\mu \times \nu$-integrable function on $X \times Y$, and

$$
\int_{X \times Y} h \mathrm{~d}(\mu \times \nu)=\left\{\int_{X} f \mathrm{~d} \mu\right\}\left\{\int_{Y} g \mathrm{~d} \nu\right\} .
$$

Problem 5: $g(x): \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function and O is non-empty open subset of \mathbb{R}. Let $h(t)=t \sin t$. Define

$$
f(x)=\inf \{t \geq 0 \mid h(t) g(x) \in O\}
$$

Show that $f(x)$ is a real-valued measurable function.

Problem 6: $\left\{f_{n}\right\}_{n \geq 1}$ is a sequence of real valued functions in $L^{2}([0,1])$. Suppose that for any $g \in L^{2}([0,1])$,

$$
\sup _{n \geq 1} \int_{[0,1]} f_{n} g d x<+\infty
$$

Prove that

$$
\sup _{n \geq 1}\left\|f_{n}\right\|_{L^{2}([0,1])}<+\infty .
$$

(You may NOT simply quote the Banach-Steinhaus Theorem or the Uniform Boundedness Principle.)

