$\frac{\text{Real Analysis Qualifying Exam}}{\text{January 2021}}$

There are 6 problems on the exam. Each problem is worth 10 points. Do as many as you can.

Show your work and justify your answers.

Math Exam ID number

1	
2	
3	
4	
5	
6	
T	

Problem 1: A.) Give an example of a sequence $\{f_n\}_n$ of Lebesgue measurable functions on [0,1] that does not converge to zero almost everywhere, but nonetheless

$$\int_0^1 f_n^{10} dx \to 0$$

B.) Is there such an example if one assumes that

$$\int_0^1 f_n^{10} dx \le \frac{1}{n^{10}}?$$

Give an example or prove there isn't one.

- **Problem 2:** A.) Give an example of a measure μ on the unit interval that differs from Lebesgue measure such that:
 - (i) $\mu([0,1]) = 1$,
 - (ii) Every Borel set is μ -measurable,
 - (iii) If $x \in [0, 1]$, then $\mu(\{x\}) = 0$.
 - (iv) If $(a, b) \subseteq [0, 1]$ and $a \neq b$ then $\mu((a, b)) \neq 0$.
 - B.) Show that for all measures μ on the unit interval satisfying properties (i-iv) there is a measure ν on the unit square $[0,1]\times[0,1]$ such that
 - (a) $\nu([0,1] \times [0,1]) = 1$,
 - (b) Every Borel set is ν -measurable
 - (c) If $(x, y) \in [0, 1] \times [0, 1]$ then $\nu(\{(x, y)\}) = 0$
 - (d) For $A \subseteq [0, 1]$

$$\nu(A \times [0,1]) = \mu(A).$$

Define the measure and prove it has properties (a)-(d).

•

Problem 3: Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be the measure spaces given by:

- X = Y = [0, 1].
- $\mathcal{A} = \mathcal{B} = \mathcal{B}_{[0,1]}$, the Borel σ -algebra of [0,1].
- $\mu = \mu_L$ (Lebesgue measure) and ν is the counting measure.

Consider the product measurable space $(X \times Y, \sigma(A \times B))$ and a subset of it defined by $E = \{(x, y) \in X \times Y; x = y\}$. Then, show that

- 1. $E \in \sigma(\mathcal{A} \times \mathcal{B})$.
- 2. $\int_X \left\{ \int_Y \mathbf{1}_E \, d\nu \right\} \, d\mu \neq \int_Y \left\{ \int_X \mathbf{1}_E \, d\mu \right\} \, d\nu.$
- 3. Why is Tonelli's Theorem not applicable?

·

Problem 4: Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces, and consider the product measure space $(X \times Y, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$. Let f be a real-valued, \mathcal{A} -measurable and μ -integrable function on X and g a real-valued, \mathcal{B} -measurable and ν -integrable function on Y. Consider the real-valued function on $X \times Y$ given by h(x, y) = f(x)g(y). Show that h is a $\sigma(\mathcal{A} \times \mathcal{B})$ -measurable and $\mu \times \nu$ -integrable function on $X \times Y$, and

$$\int_{X\times Y} h \,\mathrm{d}(\mu \times \nu) = \left\{ \int_X f \,\mathrm{d}\mu \right\} \left\{ \int_Y g \,\mathrm{d}\nu \right\}.$$

.

Problem 5: $g(x): \mathbb{R} \to \mathbb{R}$ is a measurable function and O is non-empty open subset of \mathbb{R} . Let $h(t) = t \sin t$. Define

$$f(x) = \inf\{t \ge 0 | h(t)g(x) \in O\}.$$

Show that f(x) is a real-valued measurable function.

.

Problem 6: $\{f_n\}_{n\geq 1}$ is a sequence of real valued functions in $L^2([0,1])$. Suppose that for any $g\in L^2([0,1])$,

$$\sup_{n\geq 1} \int_{[0,1]} f_n g \, dx < +\infty,$$

Prove that

$$\sup_{n\geq 1} ||f_n||_{L^2([0,1])} < +\infty.$$

(You may NOT simply quote the Banach-Steinhaus Theorem or the Uniform Boundedness Principle.)

.