Algebra Qualifying Exam June 2020

- 1. Consider the cube C in the Euclidean vector space \mathbb{R}^3 as the set of points (x, y, z) for which the absolute value of each of the coordinates is less than or equal to 1. Let G be the group of those rotations in \mathbb{R}^3 preserving the origin which send C to itself. Show that G is isomorphic to the symmetric group S_4 .
- **2.** Let p > 2 be a prime. Prove that if G is a group of order $p^{p+3}(p^2 + p + 1)$ then G is not simple.
- **3.** Determine whether the quaternion group Q_8 can be represented as a quotient of S_4 . Justify your answer.
- **4.** Show that $D = \mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain, with respect to the usual complex norm. Find an irreducible element of D which is not in \mathbb{Z} . Justify your answer.
- **5.** Let R be a commutative ring with 1. Recall that an element r of R is idempotent iff $r^2 = r$.

Assume R is finite and strictly more than $\frac{2}{3}$ elements of R are idempotent. Let A be the set of all idempotent elements of R and $Z = A \cap (A - 1)$.

- (a) Prove that 2a = 0 whenever $a \in \mathbb{Z}$.
- (b) Prove that (Z, +) is a subgroup of (R, +) of index at most 2.
- (c) Prove that (A, +) is a subgroup of (R, +) and conclude that every element of R is idempotent.
- **6.** We say that a finitely generated R-module M is *invertible* iff there exist a finitely generated R-module N such that $M \otimes_R N \cong R$.
 - (a) Find all invertible \mathbb{Z} -modules.
 - (b) Prove that if M_1 and M_2 are both invertible then so is $M_1 \otimes_R M_2$.
 - (c) Prove that every invertible R-module is projective.
- 7. Consider the polynomial $g(x) = x^{20} + x^{10} + 1$.
 - (a) Find the splitting field of g(x) if we consider g(x) as a polynomial in $\mathbb{F}_5[x]$.
 - (a) Find the splitting field of g(x) if we consider g(x) as a polynomial in $\mathbb{F}_7[x]$.
- **8.** Let $f(x) \in \mathbb{Q}[x]$ be a monic cubic polynomial with distinct roots r, s, t. Let g(x) be the monic cubic polynomial with roots $r^2 + s + t$, $s^2 + t + r$ and $t^2 + r + s$.
 - (a) Prove that $g(x) \in \mathbb{Q}[x]$, that is, the coefficients of g(x) are in \mathbb{Q} .
 - (b) Prove that if $Gal(f) \cong S_3$ then $Gal(g) \cong S_3$.
- **9.** Let p be a prime, L be a finite field with p^2 elements and K be a finite field with p elements. Consider the map $F: L \to L$ taking x to its p-th power x^p . If L is viewed as a vector space over K, show that F is K-linear and find its characteristic and minimal polynomials.
- **10.** Prove that for every $n \geq 3$ there exists an $n \times n$ nonsingular matrix $A \neq \pm I$ over \mathbb{F}_3 such that $I + A^2$ is its inverse.

1