ALGEBRA QUALIFYING EXAM JANUARY 6, 2021

1. Assume G is a finite group and H is a normal subgroup of G. Recall that $n_{p}(G)$ is the number of Sylow p-subgroups of G. Prove that $n_{p}(G / H) \leq n_{p}(G)$.
2. Decide: Is it possible for the symmetric group S_{5} to act transitively on a set of cardinality 14 ? Provide a proof to support your claim.
3. Let R be a principal ideal domain. Suppose that $f, g, h \in R$ are such that $f=g h$ while g and h are relatively prime. Prove that

$$
R /(f) \cong R /(g) \times R /(h)
$$

4. Consider an integral domain R and its corresponding field of fractions F. Assume $p(x) \in R[x]$ is a monic pronominal and that it is possible to write $p(x)$ as a product

$$
p(x)=q(x) r(x)
$$

where $q(x), r(x) \in F[x]$ are monic polynomials of degree smaller than $\operatorname{deg}(p(x))$ and at least one of $q(x), r(x)$ is not in $R[x]$. Prove that R is not a unique factorization domain.
5. Let R be a commutative ring and let $e \in R$. For an R-module M, denote $e M=\{e m: m \in M\}$, which is a submodule of M. If

$$
0 \rightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \rightarrow 0
$$

is an exact sequence of R-modules and $e=e^{2}$, prove that

$$
0 \rightarrow e L \xrightarrow{\alpha} e M \xrightarrow{\beta} e N \rightarrow 0
$$

is also an exact sequence.
6. Consider an integral domain R and a principal ideal I of R, which is viewed as an R-module. Let M be the R-module $I \otimes_{R} I$. Prove that the only torsion element of M is zero.
7. Recall that \mathbb{F}_{q} denotes the finite field with q elements. Find a polynomial $p(x) \in \mathbb{F}_{2}(x)$ such that $\mathbb{F}_{2}[x] /(p(x)) \cong \mathbb{F}_{8}$. Prove that your polynomial yields the desired isomorphism.
8. Consider a subfield F of the field of real numbers \mathbb{R}. Let $a \in F$ and $K=F(\sqrt[n]{a})$ where $\sqrt[n]{a} \in \mathbb{R}$ is an n-th root of a in \mathbb{R} and n is odd.

Assume L is a Galois extension of F such that $L \subseteq K$. Prove that $L=F$.
Remark. The following theorems from the course may be useful.
A. Assume F is a field of characteristic 0 which contains all n-th roots of unity. Then the following holds: If $a \in F$ and b is an n-th root of a then the extension $F(b) / F$ is cyclic of order dividing n.
B. Assume K / F is a Galois extension of fields and F^{\prime} / F is any finite extension of fields. Then $K F^{\prime} / F^{\prime}$ is a Galois extension and

$$
\operatorname{Gal}\left(K F^{\prime} / F^{\prime}\right) \simeq \operatorname{Gal}\left(K / K \cap F^{\prime}\right)
$$

9. Assume $A \in M_{n}(\mathbb{C})$ is a matrix over complex numbers such that all eigenvalues of A are non-zero. Prove that A has a square root in $M_{n}(\mathbb{C})$, that is, there is a matrix $B \in M_{n}(\mathbb{C})$ such that $A=B^{2}$.

Remark. It may be helpful to examine the Jordan form of the square of a Jordan cell.
10. Find a non-singular matrix $A \in M_{n}\left(\mathbb{F}_{5}\right)$ of smallest possible dimension n such that $A^{2}+2 I$ is its own inverse and A is not a scalar multiple of I.

