Qualifying Examination

Math Exam ID Number:

\qquad

The exam consists of six problem. Solve as many as you can by giving complete arguments and providing explicit justification. Show all your work. Each problem is worth 5 points.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Math Exam ID Number:

Problem 1

In a topological space X, a subset $E \subset X$ is called a G_{δ} set if it can be written as the countable intersection of open sets. Consider a map $f: X \rightarrow Y$ between metric spaces X and Y. Prove that

$$
C(f)=\{x \in X \mid f \text { is continuous at } x\}
$$

is a G_{δ} subset of X.

Math Exam ID Number:

Math Exam ID Number:

Problem 2

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set of finite Lebesgue measure. Suppose further that $f: E \rightarrow \mathbb{R}$ is a Lebesgue measurable function satisfying the following condition:

$$
\forall \varepsilon>0 \exists \delta>0 \text { s.t } \int_{F}|f| d m \leq \varepsilon \text { whenever } E \supset F \in \mathcal{L} \text { with } m(F) \leq \delta .
$$

Prove that $f \in \mathrm{~L}^{1}(E, m)$.

Math Exam ID Number:

Math Exam ID Number:

\qquad

Problem 3

Suppose that (X, \mathcal{B}, μ) is a finite measure space. Define a pseudometric d on \mathcal{B} by setting

$$
d(A, B):=\mu(A \triangle B)
$$

where $A \triangle B$ denotes the symmetric difference of A and B, that is,

$$
A \triangle B=(A \backslash B) \cup(B \backslash A)
$$

The relation $d(A, B)=0$ defines an equivalence relation \sim_{μ} on \mathcal{B}. We denote the equivalence class of A by $[A]_{\mu}$. The pseudometric d induces a metric on the set of equivalence classes by setting $d\left([A]_{\mu},[B]_{\mu}\right)=d(A, B)$. Prove that the resulting metric space, that is, the set of \sim_{μ}-equivalence classes with the aformentioned metric, is complete.

Math Exam ID Number:

Math Exam ID Number:

Problem 4

Does there exist a Lebesgue measurable subset $E \subset[0,1]$ such that $m(E \cap[0, a])=\frac{a}{2}$ for all $a \in[0,1]$? Justify your answer.

Math Exam ID Number:

Math Exam ID Number:

Problem 5

Suppose that $f_{n}:[0,1] \rightarrow[0, \infty)$ is a sequence of measurable functions such that $\left\|f_{n}\right\|_{2} \leq 1$ for all $n \in \mathbb{N}$. Further suppose that $f_{n} \rightarrow f$ a.e. Prove that:
(i) $f \in L^{2}[0,1]$.
(ii) $f_{n} \rightarrow f$ in $L^{1}[0,1]$.

Math Exam ID Number:

Math Exam ID Number:

Problem 6
Let $f \in L^{4}[0,1]$ be such that $\|f\|_{4} \leq 2\|f\|_{2}$. Show that $\|f\|_{2} \leq 4\|f\|_{1}$.

Math Exam ID Number:

