Qualifying Examination

Math Exam ID Number: _____

The exam consists of six problem. Solve as many as you can by giving complete arguments and providing explicit justification. Show all your work. Each problem is worth 5 points.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Problem 1

In a topological space X, a subset $E \subset X$ is called a G_{δ} set if it can be written as the countable intersection of open sets. Consider a map $f: X \to Y$ between metric spaces X and Y. Prove that

 $C(f) = \left\{ x \in X \, \middle| \, f \text{ is continuous at } x \right\}$

is a G_{δ} subset of X.

Problem 2

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set of finite Lebesgue measure. Suppose further that $f : E \to \mathbb{R}$ is a Lebesgue measurable function satisfying the following condition:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t} \ \int_{F} |f| \ dm \le \varepsilon \text{ whenever } E \supset F \in \mathcal{L} \text{ with } m(F) \le \delta.$$

Prove that $f \in L^1(E, m)$.

Problem 3

Suppose that (X, \mathcal{B}, μ) is a finite measure space. Define a pseudometric d on \mathcal{B} by setting

$$d(A,B) := \mu(A \triangle B),$$

where $A \triangle B$ denotes the symmetric difference of A and B, that is,

$$A \triangle B = (A \setminus B) \cup (B \setminus A).$$

The relation d(A, B) = 0 defines an equivalence relation \sim_{μ} on \mathcal{B} . We denote the equivalence classs of A by $[A]_{\mu}$. The pseudometric d induces a metric on the set of equivalence classes by setting $d([A]_{\mu}, [B]_{\mu}) = d(A, B)$. Prove that the resulting metric space, that is, the set of \sim_{μ} -equivalence classes with the aformentioned metric, is complete.

Problem 4

Does there exist a Lebesgue measurable subset $E \subset [0,1]$ such that $m(E \cap [0,a]) = \frac{a}{2}$ for all $a \in [0,1]$? Justify your answer.

Problem 5

Suppose that $f_n : [0,1] \to [0,\infty)$ is a sequence of measurable functions such that $||f_n||_2 \leq 1$ for all $n \in \mathbb{N}$. Further suppose that $f_n \to f$ a.e. Prove that:

(i)
$$f \in L^2[0,1]$$
.

(ii) $f_n \to f$ in $L^1[0, 1]$.

Problem 6

Let $f \in L^4[0,1]$ be such that $||f||_4 \le 2||f||_2$. Show that $||f||_2 \le 4||f||_1$.