Real Analysis Qualifying Exam Spring 2018

June 19, 2018

Student's math exam ID\#: \qquad

INSTRUCTIONS: Do all work on the sheets provided. There is a blank page following each problem. Please do not use the back of the sheets in your solutions.

Problem	Point Value	Points Received
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	$\mathbf{6 0}$	

Student's math exam ID\#:

Problem 1 (10 points) Let $f \in L^{2}(\mathbb{R})$, and let $\left(\alpha_{n}\right)_{n=1}^{\infty},\left(\beta_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers such that $\alpha_{n} \neq 0$ for all $n=1,2, \ldots$, and $\sum_{n=1}^{\infty} \frac{\left|\beta_{n}\right|}{\left|\alpha_{n}\right|^{1 / 2}}<\infty$. Show that $\lim _{n \rightarrow \infty} \beta_{n} f\left(\alpha_{n} x\right)=0$ for almost all $x \in \mathbb{R}$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 2 (10 points) Let $g_{k}, g \in L^{1}(\mathbb{R})$ and assume that $g_{k} \rightarrow g$ in $L^{1}(\mathbb{R})$ as $k \rightarrow \infty$. Let $\left(\alpha_{k}\right)_{k=1}^{\infty}$ be a bounded sequence in \mathbb{R}, and let $f_{k}(x):=g_{k}\left(x+\alpha_{k}\right)$, $k=1,2, \ldots$. Prove that the sequence of functions $\left(f_{k}\right)_{k=1}^{\infty}$ has a subsequence that converges in $L^{1}(\mathbb{R})$, almost everywhere, and in measure.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 3 (10 points) Let $f, g \in L^{p}\left(\mathbb{R}^{n}\right)$ for some $1<p<\infty$. Assume that for every $0<t<\infty$,

$$
m\left(\left\{x \in \mathbb{R}^{n}:|g(x)|>t\right\}\right) \leq \frac{1}{t} \int_{\left\{x \in \mathbb{R}^{n}:|g(x)|>t\right\}}|f(x)| d x
$$

where m is the Lebesgue measure. Show that

$$
\|g\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq p^{\prime}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Student's math exam ID\#:

Student's math exam ID\#:

Problem 4 (10 points) Let $f \in L^{1}(\mathbb{R})$ be such that

$$
\int_{E} f(y) d y=0
$$

for all Lebesgue measurable sets $E \subset \mathbb{R}$ with $m(E)=\pi$. Prove or disprove that $f(x)=0$ for almost all $x \in \mathbb{R}$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 5 (10 points) Let μ be a positive finite Borel measure on $[0,1]$ and let $\varphi:[0,1] \rightarrow[0,1]$ be continuous. Assume that $\mu\left(\varphi^{-1}(E)\right)=0$ for every Borel set $E \subset[0,1]$ with $\mu(E)=0$. Show that there is a Borel measurable function $f:[0,1] \rightarrow[0, \infty)$ such that

$$
\int_{0}^{1} g(\varphi(x)) d \mu(x)=\int_{0}^{1} g(x) f(x) d \mu(x)
$$

for all continuous $g:[0,1] \rightarrow \mathbb{R}$.

Student's math exam ID\#:

Student's math exam ID\#:

Problem 6 (10 points) Let $f \in L^{p}([0,1])$ for some $1 \leq p<\infty$. Compute

$$
\lim _{n \rightarrow \infty}\left(n^{p-1} \sum_{k=0}^{n-1}\left(\int_{k / n}^{(k+1) / n}|f(y)| d y\right)^{p}\right)^{1 / p} .
$$

Explain fully.

Student's math exam ID\#:

