1. Suppose G is a group of order 80. Prove that G is not simple.

2. Prove that the additive group \mathbb{R}/\mathbb{Z} is isomorphic to the multiplicative group \{\(z^2\in\mathbb{C}\) : \(|z|=1\)}.

3. Let R be an integral domain. A nonzero nonunit element $p \in R$ is prime if $p | ab$ implies that $p | a$ or $p | b$. A nonzero nonunit element $p \in R$ is irreducible if $p = ab$ implies that a or b is a unit.
 (a) Show that every prime element is irreducible.
 (b) Show that if R is a Unique Factorization Domain (UFD), then every irreducible element is prime.

4. Let G and H be finite abelian groups, and suppose that the order of G is relatively prime to the order of H. Show that $G \otimes_{\mathbb{Z}} H = 0$.

5. Let D_8 be the dihedral group of order 8.
 (a) Compute the center of D_8.
 (b) Compute the commutator subgroup of D_8.
 (c) Compute the conjugacy classes of D_8.

6. Let R be a commutative ring with 1, and let M be an R-module. Show that if $M \oplus M$ is a finitely generated R-module, then M is a finitely generated R-module.

7. (a) Find a polynomial $f(x) \in \mathbb{Q}[x]$ whose splitting field L_f has Galois group $\text{Gal}(L_f/\mathbb{Q})$ isomorphic to $\mathbb{Z}/2\mathbb{Z}$.
 (b) Find a polynomial $g(x) \in \mathbb{Q}[x]$ whose splitting field L_g has Galois group $\text{Gal}(L_g/\mathbb{Q})$ isomorphic to S_3.
 (c) Find a polynomial $h(x) \in \mathbb{Q}[x]$ whose splitting field L_h has Galois group $\text{Gal}(L_h/\mathbb{Q})$ isomorphic to $\mathbb{Z}/2\mathbb{Z} \times S_3$.
 Justify your answers.

8. Suppose F is a field and $f(x) \in F[x]$ is a nonconstant polynomial. Show that $F[x]/(f(x))$ is a direct product of fields if and only if $f(x)$ is a separable polynomial.

9. Suppose p is a prime.
 (a) Show that all matrices $A \in \text{GL}_2(\mathbb{F}_p)$ of order exactly p have the same characteristic polynomial, and find that polynomial.
 (b) Show that all matrices $A \in \text{GL}_2(\mathbb{F}_p)$ of order exactly p have the same minimal polynomial, and find that polynomial.

10. Let $K = \mathbb{F}_3(\sqrt{2})$ and let $f(x) = x^4 + 1 \in \mathbb{F}_3[x]$.
 (a) Show that K is the splitting field of f.
 (b) Find a generator α of the multiplicative group K^\times.
 (c) Express the roots of f in terms of α.