ALGEBRA QUALIFYING EXAM

Fall 2015

Instructions: LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators.

Notation: Let \mathbb{F}_q denote the finite field with q elements. Let \mathbb{Z} denote the integers. Let \mathbb{Q} denote the rational numbers. Let \mathbb{R} denote the real numbers. Let \mathbb{C} denote the complex numbers.

- 1. (a) Define **prime ideal**.
 - (b) Define maximal ideal.
 - (c) Give an example of a ring R and ideals P_1 , P_2 , and P_3 of R such that for the properties "prime ideal" and "maximal ideal" of R,
 - i. P_1 satisfies both properties,
 - ii. P_2 satisfies neither property,
 - iii. P_3 satisfies one property but not the other.

Justify your answers.

- 2. Show that if a group G has only finitely many subgroups then G is a finite group.
- 3. Let A be an $n \times n$ matrix with entries in \mathbb{R} such that $A^2 = -I$.
 - (a) Prove that n is even.
 - (b) Prove that A is diagonalizable over $\mathbb C$ and describe the corresponding diagonal matrices.
- 4. Let G be a group of order 70. Prove that G has a normal subgroup of order 35.
- 5. Construct a Galois extension F of \mathbb{Q} satisfying $Gal(F/\mathbb{Q}) \simeq D_8$, the dihedral group of order 8. Fully justify.
- 6. Let F be a field. Prove that every ideal of F[x] is principal.
- 7. Give an example of a module M over a ring R such that M is **not** finitely generated as an R-module. Prove that it is not finitely generated as an R-module.
- 8. Suppose H is a normal subgroup of a finite group G.
 - (a) Prove or disprove: If H has order 2, then H is a subgroup of the center of G.
 - (b) Prove or disprove: If H has order 3, then H is a subgroup of the center of G.
- 9. (a) What does it mean for a representation to be **irreducible**?
 - (b) Suppose p is a prime. Let $G = \mathbb{Z}/p\mathbb{Z}$ and let $\rho : G \to \mathrm{GL}_2(\mathbb{F}_p)$ be a representation. Show that ρ is reducible.
- 10. (a) Compute the order of $GL_4(\mathbb{F}_{3^2})$. (Justify your reasoning.)
 - (b) Compute the order of $SL_4(\mathbb{F}_{3^2})$. (Justify your reasoning.)
 - (c) Show that $\mathbb{Z}[\sqrt{10}]$ is not a UFD.