Print Your Name: last - first

Print Your I.D. Number: \qquad

Comprehensive Examination of Analysis

9:00Am-11:30AM, June 17, 2014

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 \longrightarrow / 10$
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 \longrightarrow / 10$
Problem $7 \longrightarrow / 10$
Problem $8 \longrightarrow / 10$
Problem $9 — / 10$

Total $\quad / 90$

Your Name: last \quad first

1. Suppose that f is differentiable on $(-\infty, \infty)$ and has n many zeros in $(-\infty, \infty)$. Prove that $f^{\prime}(x)$ has $(n-1)$ many zeros in $(-\infty, \infty)$.

Score:-_/10
Your Name: last \quad first
2. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of points in \mathbb{R}^{m} such that

$$
\sum_{n=1}^{\infty}\left\|x_{n}-x_{n-1}\right\|<\infty
$$

Prove that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence in \mathbb{R}^{m}.

Score:- / 10
Your Name: last \quad first
3. Show that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined recursively by

$$
a_{1}>1, \quad a_{n}=\sqrt{2 a_{n-1}-1}, \quad n \geq 2,
$$

converges and finds its limit.
4. (a) Let $F:(0, \infty) \rightarrow \mathbb{R}$ be an increasing function which is bounded from above. Prove $\lim _{x \rightarrow \infty} F(x)$ exists.
(b) Let f and g two continuous functions on $(0, \infty)$ such that

$$
0 \leq f(x) \leq g(x)
$$

If $\int_{0}^{\infty} g(x) d x$ exists in \mathbb{R}, then $\int_{0}^{\infty} f(x) d x$ exists in \mathbb{R}.
5. Let S be a subset of \mathbb{R}^{2} such that every point $x \in S$ is an isolated point. Prove that S is at most countable.

Score:-_/10
Your Name: \quad last \quad first
6. Let $X=C[0,2 \pi]$ be the space of all real-valued continuous functions on $[0,2 \pi]$ with a metric

$$
d(f, g)=\max \{|f(x)-g(x)|: x \in[0,2 \pi]\}, \quad f, g \in C[0,2 \pi] .
$$

Let

$$
Y=\{\sin (x+\alpha): \alpha \in \mathbb{R}\} \subset C[0,2 \pi] .
$$

Prove that Y is a compact subset of (X, d).

Score:- / 10
Your Name: last \quad first
7. Let $f(x)$ be a Riemann integrable function on $[0,1]$. Prove that

$$
\lim _{m \rightarrow \infty} \int_{0}^{1} f(x) \cos (m x) d x=0
$$

8. Let

$$
f(x)=\ln \left(1+\|x\|^{2}\right), \quad x \in \mathbb{R}^{n}
$$

Prove that $f(x)$ is uniformly continuous on \mathbb{R}^{n}.
9. Let f be a differentiable function on $[0,1]$ such that

$$
\int_{0}^{1}\left|f^{\prime}(s)\right|^{2} d s \leq A^{2}
$$

for some positive constant A. Prove

$$
|f(x)-f(y)| \leq A|x-y|^{1 / 2}
$$

for all $x, y \in[0,1]$.

