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1. Suppose that f is differentiable on (—o00,00) and has n many zeros in
(—00,00). Prove that f'(x) has (n — 1) many zeros in (—o00, 00).
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2. Let {z,}°, be a sequence of points in R™ such that

o
Z |en — xp1|| < 0.

n=1

Prove that {z,}5°, is a convergent sequence in R™.

first
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3. Show that the sequence {a,} -, defined recursively by

a; > 1, Ap = +/20,-1 — 1, n>2,

converges and finds its limit.



Score: /10 Your Name:

last first

4. (a) Let F': (0,00) — R be an increasing function which is bounded from
above. Prove lim, ., F'(z) exists.
(b) Let f and g two continuous functions on (0, c0) such that

0< flz) <g(x)

If [° g(x)dx exists in IR, then [5° f(x)dx exists in RR.
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5. Let S be a subset of IR? such that every point = € S is an isolated point.
Prove that S is at most countable.
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6. Let X = C0,2n] be the space of all real-valued continuous functions on
0, 27| with a metric

d(f,g) = max{[f(z) — g(x)| : z € [0,27]}, f,g € C[0,27].

Let
Y = {sin(z + ) : « € R} C C[0, 27].

Prove that Y is a compact subset of (X, d).
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7. Let f(x) be a Riemann integrable function on [0, 1]. Prove that

lim 1f(m) cos(mx)dx = 0.

m—oo o
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8. Let
f(2) = (1 + [2]), @R

Prove that f(x) is uniformly continuous on IR".
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9. Let f be a differentiable function on [0, 1] such that

1
|17/ (s)Pds < 4°
0
for some positive constant A. Prove

1f(x) = f(y)| < Alz — y['/?

for all z,y € [0, 1].
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