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Notation:
C denotes the complex plane; i =

√
−1;

D(z0, r) denotes the open disc in C centered at z0 and radius r;
U = {z = x+ iy : y > 0} is the upper half plane in C.



1. Show that ∞∑
n=1

1

z2 + n2

defines a meromorphic function on C.
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2. Show that for a positive integer n ≥ 1∫ ∞

0

1

x2n + 1
dx =

π

2n sin π
2n

.
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3. For any non-integers α, β and γ, find the radius of convergence for the
power series

∞∑
n=0

α (α + 1) . . . (α + n− 1) β (β + 1) . . . (β + n− 1)

n!γ (γ + 1) . . . (γ + n− 1)
zn.
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4. Let f be an entire function. Prove the following two statements.
(a) If |f(z)| ≤ M(1 + |z|n) on C for some positive constant M then f is a
polynomial of degree at most n.

(b) If lim|z|→∞ |f(z)| =∞ then f is a polynomial.
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5. Find all entire holomorphic functions f with justification such that

Imf(z) = (y2 − x2),

where Imf denotes the imaginary part of f .
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6. Prove or disprove: there exists a family {fn} of holomorphic functions
on D(0, 2) such that fn → z̄3 uniformly on the compact set {z ∈ C : |z| =
1 or 1/2} (two circles: |z| = 1 and |z| = 1/2).
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7. Construct a conformal map φ which maps D1 onto D2, where

D1 = {z = x+ iy ∈ D(0, 1) : y > x}; and D2 = {z ∈ C : |z| > 1}.
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8. Let f : U → U be holomorphic with U being the upper half plane. Prove
that

|f ′(i)| ≤ |f(i)|

and provide an example indicates the above inequality is an equality.
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