Print Your Name: last first
Print Your I.D. Number:

Qualifying Examination, June 15, 2016
$1: 00 \mathrm{pm}-3: 30 \mathrm{pm}$, Room PSCB 120

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 — / 10$
Problem $4 — / 10$
Problem $5 —$ - 10
Problem $6 \longrightarrow / 10$
Problem $7 \longrightarrow / 10$
Problem $8 — / 10$

Total $\quad / 80$

Notation:

C denotes the complex plane; $i=\sqrt{-1}$;
$D\left(z_{0}, r\right)$ denotes the open disc in \mathbf{C} centered at z_{0} and radius r;
$U=\{z=x+i y: y>0\}$ is the upper half plane in \mathbf{C}.

1. Show that

$$
\sum_{n=1}^{\infty} \frac{1}{z^{2}+n^{2}}
$$

defines a meromorphic function on \mathbf{C}.
2. Show that for a positive integer $n \geq 1$

$$
\int_{0}^{\infty} \frac{1}{x^{2 n}+1} \mathrm{dx}=\frac{\pi}{2 \mathrm{n} \sin \frac{\pi}{2 \mathrm{n}}}
$$

3. For any non-integers α, β and γ, find the radius of convergence for the power series

$$
\sum_{n=0}^{\infty} \frac{\alpha(\alpha+1) \ldots(\alpha+n-1) \beta(\beta+1) \ldots(\beta+n-1)}{n!\gamma(\gamma+1) \ldots(\gamma+n-1)} z^{n} .
$$

4. Let f be an entire function. Prove the following two statements. (a) If $|f(z)| \leq M\left(1+|z|^{n}\right)$ on \mathbf{C} for some positive constant M then f is a polynomial of degree at most n.
(b) If $\lim _{|z| \rightarrow \infty}|f(z)|=\infty$ then f is a polynomial.
5. Find all entire holomorphic functions f with justification such that

$$
\operatorname{Im} f(z)=\left(y^{2}-x^{2}\right),
$$

where $\operatorname{Im} f$ denotes the imaginary part of f.
6. Prove or disprove: there exists a family $\left\{f_{n}\right\}$ of holomorphic functions on $D(0,2)$ such that $f_{n} \rightarrow \bar{z}^{3}$ uniformly on the compact set $\{z \in \mathbf{C}:|z|=$ 1 or $1 / 2\}$ (two circles: $|z|=1$ and $|z|=1 / 2$).
7. Construct a conformal map ϕ which maps D_{1} onto D_{2}, where

$$
D_{1}=\{z=x+i y \in D(0,1): y>x\} ; \text { and } D_{2}=\{z \in \mathbf{C}:|z|>1\} .
$$

8. Let $f: U \rightarrow U$ be holomorphic with U being the upper half plane. Prove that

$$
\left|f^{\prime}(i)\right| \leq|f(i)|
$$

and provide an example indicates the above inequality is an equality.

