Print Your Name: —	last	first
Print Your I.D. Numbe	er:	

Qualifying Examination, September 23, 2014 1:00 pm–3:30pm, Room RH 114

Total ———/ 80

Notation: $D(z_0, r)$ denotes the open disc in **C** centered at z_0 and radius r.

1. Let f be an entire holomorphic function such that $f(z) \notin \mathbf{R}$ for all $z \in \mathbf{C}$, where **R** is the real line in the complex plane **C**. Prove or disprove f is a constant.

2. Evaluate the real integral

$$\int_0^\infty \frac{\ln x}{1+x^4} dx$$

3. Let f be entire holomorphic such that $f(x + ix) \in \mathbf{R}$ for all $x \in \mathbf{R}$. If f(2) = 1 - i then find f(2i), where $i^2 = -1$.

4. Let h(x) be a twice differentiable function on [-1, 1] such that h(0) = h'(0) = 0 and $h''(0) \neq 0$. Prove

$$\sum_{n=1}^{\infty} h(\frac{1}{n}) z^n$$

defines a holomorphic function on D(0,1) which is continuous on $\overline{D(0,1)}$.

5. Let D be a bounded domain in \mathbb{C} with piecewise C^1 boundary. Let f(z) be holomorphic in a bounded domain D and $f \in C(\overline{D})$ with all zeros $\{z_1, \dots, z_n\} \subset D$ counting multiplicity. Let g be holomorphic in D and continuous on \overline{D} . Evaluate

$$\int_{\partial D} \frac{f'(z)}{f(z)} g(z) dz$$

6. Let $D = \{z \in \mathbf{C} : |z| < 1, \Re z > 0, \Im z > 0\}$. Construct a conformal holomorphic map which maps D onto the unit disc D(0, 1)

7. Let *D* be a simply connected domain in **C** and $z_0 \in D$. Let \mathcal{F} be the set of all $f: D \to D(0, 1)$ such that (i) $f(z_0) = 0$; (ii) $f'(z_0) > 0$ and (iii) f is one to one. Then prove \mathcal{F} is not empty set.

8. Let u(z) be harmonic in $D =: D(0,1) \setminus \{0\}$ such that

$$\lim_{z \to 0} \frac{u(z)}{\log |z|} = 0$$

Prove that u can be extended to be harmonic in D(0, 1).