Table of your scores

Problem 1 ————/ 10
Problem 2 ————/ 10
Problem 3 ————/ 10
Problem 4 ————/ 10
Problem 5 ————/ 10
Problem 6 ————/ 10
Problem 7 ————/ 10
Problem 8 ————/ 10

Total ————/ 80
Notation: $D(z_0, r)$ denotes the open disc in \mathbb{C} centered at z_0 and radius r.

1. Let f be an entire holomorphic function such that $f(z) \not\in \mathbb{R}$ for all $z \in \mathbb{C}$, where \mathbb{R} is the real line in the complex plane \mathbb{C}. Prove or disprove f is a constant.
2. Evaluate the real integral

\[\int_0^\infty \frac{\ln x}{1 + x^4} \, dx \]
3. Let f be entire holomorphic such that $f(x + ix) \in \mathbb{R}$ for all $x \in \mathbb{R}$. If $f(2) = 1 - i$ then find $f(2i)$, where $i^2 = -1$.
4. Let $h(x)$ be a twice differentiable function on $[-1, 1]$ such that $h(0) = h'(0) = 0$ and $h''(0) \neq 0$. Prove

$$\sum_{n=1}^{\infty} h\left(\frac{1}{n}\right)z^n$$

defines a holomorphic function on $D(0, 1)$ which is continuous on $\overline{D(0, 1)}$.
5. Let D be a bounded domain in \mathbb{C} with piecewise C^1 boundary. Let $f(z)$ be holomorphic in a bounded domain D and $f \in C(\overline{D})$ with all zeros \{ z_1, \cdots, z_n \} $\subset D$ counting multiplicity. Let g be holomorphic in D and continuous on \overline{D}. Evaluate

$$\int_{\partial D} \frac{f'(z)}{f(z)} g(z) dz$$
6. Let \(D = \{ z \in \mathbb{C} : |z| < 1, \Re z > 0, \Im z > 0 \} \). Construct a conformal holomorphic map which maps \(D \) onto the unit disc \(D(0,1) \).
7. Let D be a simply connected domain in \mathbb{C} and $z_0 \in D$. Let \mathcal{F} be the set of all $f : D \to D(0,1)$ such that (i) $f(z_0) = 0$; (ii) $f'(z_0) > 0$ and (iii) f is one to one. Then prove \mathcal{F} is not empty set.
8. Let $u(z)$ be harmonic in $D = D(0, 1) \setminus \{0\}$ such that

$$\lim_{z \to 0} \frac{u(z)}{\log |z|} = 0$$

Prove that u can be extended to be harmonic in $D(0, 1)$.