Print	Your	Math	Exam	Id:	
-------	------	------	-----------------------	-----	--

Complex Qualifying Examination

Time: $1:00 \,\mathrm{pm}{-}3:30 \,\mathrm{pm}, \,6/21/2017$

Room: Rowland Hall, RH114

Table of your scores

Problem 2 ————/ 10

Problem 3 ————/ 10

Problem 4 ————/ 10

Problem 5 ————/ 10

Problem 6 ————/ 10

Total ————/ 80

Notation:

C denotes the complex plane; $i = \sqrt{-1}$;

 $D(z_0, r)$ denotes the open disc in **C** centered at z_0 and radius r.

1. Find the integral

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a + \cos\theta}, \quad a > 1.$$

2. The Bernoulli polynomials $B_n(z)$ are defined by the expansion

$$t\frac{e^{tz} - 1}{e^{t} - 1} = \sum_{n=1}^{\infty} \frac{B_n(z)}{n!} t^n.$$

Prove that $B_n(z+1) - B_n(z) = nz^{n-1}$.

3. Let f(z) be analytic in $S = \{z = x + iy : -1 < x < 1\}$ and continuous on \overline{S} , the closure of S. Suppose that f(z) are real when Re $z = x = \pm 1$. Prove that f(z) can be extended analytically to the whole plane and that the resulting entire function satisfies f(z + 4) = f(z) for all $z \in \mathbb{C}$.

- 4. Let $f_n: D(0,1) \to D(0,1) \setminus \{0\}$ be analytic such that $\sum_{n=1}^{\infty} |f_n(0)| < \infty$. (a) Prove $\sum_{n=1}^{\infty} |f_n(z)|^3$ converges uniformly on $|z| \leq \frac{1}{2}$; (b) Give an example of $\{f_n\}_{n=1}^{\infty}$ satisfying above conditions but $\sum_{n=1}^{\infty} |f_n(z)|^3$ diverges for any |z| > 1/2.

5. Let f be holomorphic in $D = \{z \in \mathbf{C} : 2 < |z| < \infty\}$ satisfying

$$\int_{|z|=3} f(z)dz = 0.$$

Prove that there is a holomorphic function F in D such that F'(z) = f(z) on D.

6. Find a conformal map which maps U_1 onto U_2 , where

$$U_1 = \{z = x + iy \in \mathbf{C} : y > 0\} \setminus \{z = iy : 1 \le y \le 2\}$$
 and $U_2 = D(0, 1) \setminus \{0\}$.

7. Let f be meromorphic in \mathbf{C} satisfying

$$|f(z)|^3 \le |\tan z|, \quad z \in \mathbf{C} \setminus P(f),$$

where P(f) is the set of poles of f in ${\bf C}$. Prove $f(z)\equiv 0$.

8. Prove or disprove there is a non-constant entire function f=u+iv satisfying $v(z)\neq u(z)^2$ when $u(z)\geq 0$.