Print Your Math Exam Id: ______________

Complex Qualifying Examination
Time: 1:00 pm–3:30 pm, 6/21/2017
Room: Rowland Hall, RH114

Table of your scores
Problem 1 ————/ 10
Problem 2 ————/ 10
Problem 3 ————/ 10
Problem 4 ————/ 10
Problem 5 ————/ 10
Problem 6 ————/ 10
Problem 7 ————/ 10
Problem 8 ————/ 10

Total ————/ 80

Notation:
\(\mathbb{C} \) denotes the complex plane; \(i = \sqrt{-1} \);
\(D(z_0, r) \) denotes the open disc in \(\mathbb{C} \) centered at \(z_0 \) and radius \(r \).
1. Find the integral

$$\int_{0}^{2\pi} \frac{d\theta}{a + \cos \theta}, \quad a > 1.$$
2. The Bernoulli polynomials $B_n(z)$ are defined by the expansion

$$
e^{tz} - 1 \over e^t - 1 = \sum_{n=1}^{\infty} B_n(z) {t^n \over n!}.$$

Prove that $B_n(z + 1) - B_n(z) = nz^{n-1}$.
3. Let $f(z)$ be analytic in $S = \{ z = x + i y : -1 < x < 1 \}$ and continuous on \overline{S}, the closure of S. Suppose that $f(z)$ are real when $\text{Re} z = x = \pm 1$. Prove that $f(z)$ can be extended analytically to the whole plane and that the resulting entire function satisfies $f(z + 4) = f(z)$ for all $z \in \mathbb{C}$.
4. Let $f_n : D(0,1) \to D(0,1) \setminus \{0\}$ be analytic such that $\sum_{n=1}^{\infty} |f_n(0)| < \infty$.

(a) Prove $\sum_{n=1}^{\infty} |f_n(z)|^3$ converges uniformly on $|z| \leq \frac{1}{2}$;

(b) Give an example of $\{f_n\}_{n=1}^{\infty}$ satisfying above conditions but $\sum_{n=1}^{\infty} |f_n(z)|^3$ diverges for any $|z| > 1/2$.

5. Let f be holomorphic in $D = \{ z \in \mathbb{C} : 2 < |z| < \infty \}$ satisfying

$$\int_{|z|=3} f(z) \, dz = 0.$$

Prove that there is a holomorphic function F in D such that $F'(z) = f(z)$ on D.

6. Find a conformal map which maps U_1 onto U_2, where

$$U_1 = \{ z = x+iy \in \mathbb{C} : y > 0 \} \setminus \{ z = iy : 1 \leq y \leq 2 \} \quad \text{and} \quad U_2 = D(0,1) \setminus \{0\}.$$
7. Let f be meromorphic in \mathbb{C} satisfying

$$|f(z)|^3 \leq |\tan z|, \quad z \in \mathbb{C} \setminus P(f),$$

where $P(f)$ is the set of poles of f in \mathbb{C}. Prove $f(z) \equiv 0.$
8. Prove or disprove there is a non-constant entire function \(f = u + iv \) satisfying \(v(z) \neq u(z)^2 \) when \(u(z) \geq 0 \).