Print Your Name: last $-\frac{\text { first }}{}$

Print Your ID. Number: \qquad

Comprehensive Examination of Analysis

9:00AM-11:30AM, June 16, 2015; Rowland Hall 114

Choose 8 from the 9 problems

You need to cross out the problem you don't want to be graded

$$
\begin{array}{ll}
\text { Problem } 1 \\
\text { Problem } 2 & \\
\hline
\end{array} 10
$$

[^0]Your Name: last \quad first

1. Prove that

$$
\sum_{n \geq 2} \frac{1}{n(\log n)^{2}}<+\infty
$$

Score:- / $/ 10$
Your Name: last \quad first
2. Compute

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1} \sin (n x) e^{-x^{2}} d x
$$

Justify your answer.
3. Assume that $f \in C^{1}(\mathbb{R})$ and $\lim _{|x| \rightarrow+\infty} \frac{f(x)}{|x|}=+\infty$. Show that for any $p \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that $f^{\prime}(y)=p$ (i.e., $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is onto). Hint: Consider $g(x)=f(x)-p x$ and $\lim _{x \rightarrow \pm \infty} g(x)$.

Score:-_/10
Your Name: \quad last \quad first
4. (a) State the Stokes' Theorem
(b) Evaluate the following integral:

$$
\int_{\partial D} \frac{x^{3}}{3} d y \wedge d z+\sin (y z) d y \wedge d z+x^{10} d x \wedge d z
$$

where

$$
D=\left\{(x, y, z): \frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}<1\right\}
$$

[^1]5. Prove that $\sin (\sqrt{x})$ is uniformly continuous on $[0, \infty)$.
$$
\text { Your Name: }-\frac{l}{\text { last }} \quad \text { first }
$$
6. Let
$$
f_{n}(x)=: \frac{n x}{1+n^{2} x^{3}}
$$
(a) Prove $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ pointwisely on $[0, \infty)$;
(b) Prove or disprove $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ uniformly on $[0, \infty)$.

Score:-_/ 10
Your Name: last \quad first
7. Let (X, d) be a metric space and $E \subset X$ is a compact set. Prove that E is closed.
8. Let $f(x, y)$ be a function on the unit disc $D=\left\{(x, y): x^{2}+y^{2}<1\right\}$ with $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist for all $(x, y) \in D$. Prove or disprove the following each statement.
(a) If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are bounded on D, then f is continuous on D;
(b) If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous on D, then f is differentiable on D.

Score:-_/10
Your Name: \quad last \quad first
9. Let $1<p, q<\infty$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. Prove
(a) For any $x, y \in(0, \infty)$

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}
$$

(b) If f and g are in $L^{p}[a, b]$ and $L^{q}[a, b]$, respectively, then $f(x) g(x)$ is Lebesgue integrable and we have

$$
\int_{a}^{b} f(x) g(x) d x \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{a}^{b}|g(x)|^{q} d x\right)^{1 / q}
$$

Problem 9 (continued)

[^0]: Total $\quad / 80$

[^1]: Your Name: last first

