Print Your Name: last - first

Print Your I.D. Number: \qquad

Comprehensive Examination of Analysis

9:00Am-11:30AM, June 18, 2013

Table of your scores
Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 \longrightarrow / 10$
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 \longrightarrow / 10$
Problem $7 \longrightarrow / 10$
Problem $8 \longrightarrow / 10$
Problem $9 — / 10$

Total $\quad / 90$

Score:-_/10
Your Name: last \quad first

1. Show that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined recursively by

$$
a_{1}>\frac{3}{2}, \quad a_{n}=\sqrt{3 a_{n-1}-2}, \quad n \geq 2
$$

converges and finds its limit.

Score:-_/10
Your Name: last \quad first
2. Show that the series

$$
\sum_{n=1}^{\infty} \frac{x \sin \left(n^{2} x\right)}{n^{2}}
$$

converges pointwise to a continuous function on \mathbb{R}
3. Prove the following integral test. Assume that f is a positive and decreasing function on the interval $(0, \infty)$. Then the series $\sum_{n=1}^{\infty} f(n)$ converges if and only if the the sequence $\left\{I_{n}\right\}$ is bounded, where $I_{n}=\int_{1}^{n} f(x) \mathrm{dx}$.

Score:-_/10
Your Name: last \quad first
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy

$$
\lim _{|x| \rightarrow \infty} f(x)=0
$$

Prove or disprove $f(x)$ is uniformly continuous on \mathbb{R}.
5. Let f be an increasing function on $[0,1] . D(f)$ denotes the set of all discontinuous points of f on $[0,1]$. Prove $D(f)$ is at most countable.

Score:-_/10
Your Name: last \quad first
6. Evaluate the following integral

$$
\int_{S^{2}} z^{4} y^{2} d \sigma
$$

where $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ and $d \sigma$ is the area element on S^{2} 。
7. Let f be a bounded function on $[a, b]$. Prove or disprove
(a) If $f(x)^{2}$ is integrable on $[a, b]$ then f is integrable.
(b) If $f(x)^{3}$ is integrable on $[a, b]$ then f is integrable.
8. Let $f(x)$ be a twice differentiabale function on $[-1,1]$ such that

$$
f(0)=0 \quad \text { and } f(1)=-f(-1)
$$

Prove there is a $x_{0} \in(-1,1)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
9. Let $C[0,1]$ be the metric space consisting of all continuous functions on $[0,1]$ with a metric d defined by

$$
d(f, g)=\max \{|f(x)-g(x)|: x \in[0,1]\}
$$

Let h be a differentiable function on \mathbb{R} with $\left|h^{\prime}(x)\right| \leq 1 / 2$ for all $x \in \mathbb{R}$. A $\operatorname{map} T: C[0,1] \rightarrow C[0,1]$ is defined by

$$
T(f)(x)=(h \circ f)(x), \quad \text { for all } x \in[0,1] \quad \text { and } f \in C[0,1] .
$$

Prove that T has a unique fixed point in $C[0,1]$.

