Print Your Name:

Print Your I.D. Number:

Complex Qualifying Examination
Time: 1:00 pm-3:30pm, September 20, 2012
Room: Rowland Hall 114
Choose any 8 problems from 9

Table of your scores
Problem 1 - / 10
Problem $2 \longrightarrow / 10$
Problem $3 — / 10$
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 \longrightarrow / 10$
Problem $7 — / 10$
Problem $8-/ 10$
Problem $9 — / 10$

Total $\quad / 80$

Notation. Let $D\left(z_{0}, R\right)$ denote the disc in \mathbf{C} centered at z_{0} with radius R.

1. Show that for $a>0$,

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi(1+a)}{4 e^{a}} .
$$

2. Suppose f is analytic in an annulus $A(0, r, R)=\{z \in \mathbf{C}: r<|z|<R\}$, and there exists a sequence of polynomials p_{n} converging to f uniformly on compact subsets of $A(0, r, R)$. Show that f is an analytic function on the disc $D(0, R)$.
3. Let $P(z)$ be a polynomial in z. Assume that $P(z) \neq 0$ for $\operatorname{Re}(z)>0$. Show that $P^{\prime}(z) \neq 0$ for $\operatorname{Re}(z)>0$.
4. Determine the number of roots, counted with multiplicity, of the equation

$$
2 z^{5}-6 z^{2}+z+1=0
$$

in the annulus $A(0,1,2)=\{z \in \mathbf{C}: 1<|z|<2\}$.
5. Let f be analytic on the upper-half plane and satisfy $|f(z)|<1$. Furthermore suppose $f(i)=0$. Give an upper bound for $\left|f^{\prime}(i)\right|$ and state which functions realize this extrema.
6. Let $f(z)$ be an entire holomorphic function on \mathbf{C} such that

$$
\left|f\left(e^{z}\right)\right| \leq\left|e^{z}\right|, \quad z \in \mathbf{C}
$$

Prove $f(z) \equiv a z$ for some constant $|a| \leq 1$.
7. Let f be holomorphic in $D(0,1) \backslash\{0\}=\{z \in \mathbf{C}: 0<|z|<1\}$. If

$$
\int_{D}|f(z)|^{3} d A(z)=\int_{D}|f(x+i y)|^{3} d x d y<\infty
$$

then $z=0$ is removable singularity of f.
8. Find the largest set in \mathbf{C} where the Laurent series

$$
\sum_{j=-\infty}^{\infty} 2^{j} z^{j^{3}}
$$

converges.
9. Let u be a real-valued harmonic function in $\mathbf{C} \backslash\{0\}$. Show that then

$$
u(z)=c \log |z|+\operatorname{Re}(f(z))
$$

for some real constant c and a holomorphic function f on $\mathbf{C} \backslash\{0\}$.

