Print Your Name: ——	last	first
Print Your I.D. Numbe	r:	

Qualifying Examination, June 18, 2014 10:00 am-12:30pm, Room RH 114

Choose any 8 problems from 9

Notation: $D(z_0, r)$ denotes the open disc in **C** centered at z_0 and radius r.

1. Complete the following two problems.

(a) Describe all entire holomorphic functions f with $|f(z)| \leq |z|$ for all $z \in \mathbf{C}$;

(b) Describe all entire holomorphic functions f with $\lim_{z\to\infty} \frac{f(z)}{z} = 0$.

2. Complete the following two problems. (a) Evaluate $\int_{|z|=1} \exp(\frac{1}{z^2}) dz$. (Here, $\exp(z) =: e^z$)

(b) Evaluate $\int_0^\infty \frac{x^2}{1+x^4} dx$

3. Let $f: D(0,1) \to D(0,1)$ be holomorphic with $f(0) = \frac{1}{3}$. (a) Give a sharp upper bound estimate for |f'(0)|

(b) Give an example of f such that |f'(0)| achieves the upper bound you obtained in Part (a)

4. Prove that there is an N such that if $n \ge N$ then

$$\sum_{k=0}^{n} (k+1)z^{k} \neq 0, \quad z \in D(0, 3/4)$$

5. Let f_1, \dots, f_n be holomorphic in a domain D in \mathbb{C} and $p \in (0, \infty)$. Prove (a) $\sum_{j=1}^n |f_j(z)|^p$ is subharmonic in D(b) if there is a $z_0 \in D$ such that $\sum_{j=1}^n |f_j(z_0)|^p \ge \sum_{j=1}^n |f_j(z)|^p$ for all $z \in D$, then f_j is constant for $j = 1, 2, \dots, n$.

6. Let $D = \{z \in \mathbb{C} : 1 < |z+1| \text{ and } |z+2| < 2\}$. Construct a conformal holomorphic map which maps D onto the unit disc D(0, 1)

7. Let D be a simply connected domain in **C** and $z_0 \in D$. If $\phi_1, \phi_2 \in \text{Aut}(D)$ such that $\phi_{1}(z_{0}) - \phi_{2}(z_{0})$ and $\phi_{1}'(z_{0}) = \phi_{2}'(z_{0})$

$$\phi_1(z_0) = \phi_2(z_0)$$
 and $\phi'_1(z_0) = \phi'_2(z_0)$

then $\phi_1 \equiv \phi_2$. (Hint: Try D = D(0, 1) and $D = \mathbf{C}$ first)

8. Let f(z) be holomorphic in $D =: D(0,1) \setminus \{0\}$ such that

$$\int_D |f(z)| dA(z) < \infty$$

Prove that z = 0 is either removable or a simple pole .

9. Let $f_n: D(0,1) \to D(0,1) \setminus \{0\}$ be a sequence of holomorphic functions with $\sum_{n=1}^{\infty} |f_n(0)|^2 < \infty$. Prove that

$$\sum_{n=1}^{\infty} |f_n(z)|^3$$

converges uniformly on $\overline{D(0, 1/5)}$.