Complex Analysis

Suggested Syllabus for Complex Analysis Qualifying Examination

I. Complex Numbers and Functions
 The field of complex numbers, geometry of the complex plane, polar representation,
 the extended plane and spherical representation, analytic functions, power series,
 rational functions, elementary functions (exponential, trigonometric and
 logarithmic), Cauchy-Riemann equations, M"obius transformations, cross ratio.

II. Complex Integration and Cauchy's Theorem
 Line integrals, power series representation of analytic functions, Cauchy's estimate,
 Cauchy's theorem.

III. Applications of Cauchy's Theorem
 Liouville's theorem, Fundamental theorem of Algebra, identity (=uniqueness)
 theorem, maximum modulus theorem, Schwarz's lemma, Morera's theorem, index
 (=winding number) of a closed curve, Cauchy's integral formula, argument
 principle, open mapping theorem.

IV. Singularities
 Removable singularities, poles, order and singular part of a pole, Laurent
 expansions, essential singularities, Casorati-Weierstrass theorem, residues, residue
 theorem, evaluation of real integrals, Rouche's theorem and applications.

V. Normal families, Montel theorem, the Riemann mapping theorem, Automorphism
 groups of the unit disc, punch disk, etc. Conformal mappings (or angle preserving
 maps) between two given regions.

VI. Harmonic functions
 Mean value property, Maximum principles, Jensen's formula,
 Poisson's formula, Dirichlet problem for disk, and Harnack's theorem.

References--Complex Analysis
Functions of One Complex Variable, by J. B. Conway 2nd edition, 1978
Chapter 1 pp. 1-10; Chapters 3, 4, 5 pp. 30-127; Chapter 6, sections 1, 2 pp. 128-133;
Chapter 7, sections 1, 2, 4 pp. 142-154, 160-163; Chapter 10, sections 1, 2 pp. 252-263.

Complex Analysis, by J. Bak and D.J. Newman 1982
Chapters 1, 2, 3, 4, 5, 6, 7 pp. 1-85; Chapters 9, 10 pp. 96-118;
Chapter 11 section 1 pp. 119-127; Chapter 14, pp. 169-174; Chapter 16 pp. 184-190

Function Theory of One Complex Variable by R. E. Greene and S. G. Krantz

Complex Analysis, by Lars V. Ahlfors