Advisory/Comprehensive Exam in Real Analysis

Tuesday, June 14, 2016 - 9:00-11:30am

Problem	1	2	3	4	5	6	7	8	9	Σ
Points										

Each problem is worth 10 points. No books, notes, or calculators are allowed.

Problem 1.

Let $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers satisfying

$$
a_{n+1} \leq a_{n}+\frac{(-1)^{n}}{n}, \quad \forall n \in \mathbb{N}
$$

Prove that the sequence $\left\{a_{n}\right\}$ converges.

Problem 2.

Let $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ be a continuous function. Assume that $f^{\prime}(t)$ exists for all $t \in \mathbb{R}^{1}$. In general, $f^{\prime}(t)$ does not have to be continuous. However, prove that the intermediate value property for f^{\prime} holds, that is, the range of f^{\prime} is connected.

Problem 3.

Let $f(t)$ be a real valued function that is continuous on $[0,1]$ and differentiable on $(0,1)$. Assume that $f(0)=0$ and $\left|f^{\prime}(t)\right| \leq|f(t)|$ for all $t \in(0,1)$. Prove that $f(t) \equiv 0$.

Problem 4.

Find, with justification, the value of the integral

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{n \sin \left(x^{2} / n\right)}{x^{4}} d x
$$

Problem 5.

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Prove that the sequence of functions $\left\{f_{n}\right\}, f_{n}:[0,1] \rightarrow \mathbb{R}$, defined by

$$
f_{n}(x)=\int_{0}^{x} e^{\left(1+t^{4}\right) \sin ^{2}\left(a_{n} t^{5}\right)} d t
$$

has a subsequence that converges uniformly on $[0,1]$.

Problem 6.

a) Let $\left\{K_{\alpha}\right\}$ be a family of connected subsets of a metric space M such that any two sets from the family have non-empty intersection. Prove that the union $\cup_{\alpha} K_{\alpha}$ is connected.
b) Let $\left\{K_{\alpha}\right\}$ be a family of path connected subsets of a metric space M such that any two sets from the family have non-empty intersection. Is it true that the union $\cup_{\alpha} K_{\alpha}$ is path connected?

Problem 7.

Let M be a compact metric space, and $\epsilon>0$. Show that there exists $n \in \mathbb{N}$ such that every set of n distinct points in M contains at least two points with distance between them less than ϵ.

Problem 8.
Let $U \subset \mathbb{R}^{2}$ be the region enclosed by the curve $\gamma(t)=\left(3 t^{2}-t^{3}, 6 t-2 t^{2}\right)$, $t \in[0,3]$. Find the area of U.

Problem 9.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be a continuous function, and consider the function F : $\mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ given by

$$
F(x, y)=\int_{D_{x, y}} f(u, v) d u d v, \quad D_{x, y}=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2} \leq x^{2}+y^{2}\right\}
$$

Is $F(x, y)$ differentiable? If yes, find the differential $D F$.

