Math 206 Practice Problems

1 Group Theory

1.1 Specific Groups \((S_n, A_n, D_n, \text{cyclic, abelian, } \ldots)\)

1. Show that \(\alpha\) and \(\alpha^{-1}\) have the same cycle type for all \(\alpha \in S_n\).

2. Let \(\alpha \in S_n\). Prove that \(\alpha\) and \(\alpha^2\) have the same cycle type \(\iff |\alpha|\) is odd.

3. Let \(\alpha \in S_n\). A fixed point of \(\alpha\) is a number \(m \in \{1, \ldots, n\}\) such that \(\alpha(m) = m\). Suppose that for all \(k \in \mathbb{N}\), either \(\alpha^k\) has no fixed point or \(\alpha^k = 1\). Prove that \(|\alpha|\) divides \(n\).

4. Let \(G\) be a subgroup of \(S_n\). Show that if \(G\) contains an odd permutation then \(G \cap A_n\) is of index 2 in \(G\).

5. Let \(G\) be a finite group with \(x, y\) distinct elements of order 2, and let \(H = \langle x, y \rangle\). Prove that \(H\) is a dihedral group.

6. (i) Find the maximal orders of elements of \(A_n\) and \(S_n\) for \(n = 7, 8\).
 (ii) Find a subgroup of \(A_6\) of order 8.

7. Show that any proper subgroup of \(Q_8\) is cyclic and normal.

8. How many homomorphisms are there from the group \(\mathbb{Z}/(2) \times \mathbb{Z}/(2)\) to \(S_3\)?

9. Let \(G = \mathbb{Z}/(81) \times \mathbb{Z}/(30) \times \mathbb{Z}/(16) \times \mathbb{Z}/(45)\).
 (i) What is the largest cyclic subgroup of \(G\)?
 (ii) How many elements of order 9 does \(G\) have?

10. Suppose \(G\) is a group that contains more than 12 elements of order 13. Prove that \(G\) is not cyclic.

11. Find the order of \((6, 4)\) in \(\mathbb{Z}/(24) \oplus \mathbb{Z}/(16)\).

12. Is there a surjective group homomorphism from \(\mathbb{Z}/(28)\) to \(\mathbb{Z}/(6)\)?
13. Show that if \(G \) is a finite cyclic group, then \(G \) has exactly one subgroup of order \(m \) for each positive integer \(m \) dividing \(|G| \).

14. Suppose \(n = pq \) with \(p, q \) distinct odd primes. Prove that \((\mathbb{Z}/n\mathbb{Z})^*\) is not cyclic.

15. List up to isomorphism the abelian groups \(A \) of order 108 satisfying both of the following:
 (i) \(A \) has an element of order 9;
 (ii) \(A \) does not have an element of order 24.

16. Let \(G \) be an abelian group. Let \(K = \{ a \in G : a^2 = 1 \} \) and let \(H = \{ x^2 : x \in G \} \). Show that \(G/K \cong H \).

17. Let \(N \trianglelefteq G \) such that every subgroup of \(N \) is normal in \(G \) and \(C_G(N) \subseteq N \). Prove that \(G/N \) is abelian.

18. Let \(G \) be an abelian group generated by \(x, y, z \) subject to the relations
 \[
 \begin{align*}
 15x + 3y &= 0 \\
 3x + 7y + 4z &= 0 \\
 18x + 14y + 8z &= 0
 \end{align*}
 \]
 (i) Write \(G \) as a product of two cyclic groups.
 (ii) How many elements of \(G \) have order 2?

1.2 Group actions, Sylow

1. Assume \(P \) is a Sylow \(p \)-subgroup of \(G \). Prove that \(P \) is the only Sylow \(p \)-subgroup of \(G \) contained in \(N_G(P) \).

2. Let \(N \) be a non-trivial normal subgroup of a finite \(p \)-group \(G \). Prove that \(N \) intersects \(Z(G) \) non-trivially.

3. Let \(G \) be a finite group of order \(n > 2 \). Let \(H \) be a subgroup of \(G \) such that \(r = [G : H] > 1 \). Assume that \(r! < 2n \). Prove that \(G \) is not a simple group. [Hint: construct a map from \(G \) into \(S_r \).]
4. Show that a group of order $2m$ with m odd has a normal subgroup of order m. [Hint: construct a map φ from G into S_{2m}. Find an odd permutation in $\varphi(G)$.

5. Let G be a finite group. Show that if G has a normal subgroup N of order 3 that is not contained in the center of G, then G has a subgroup of index 2. [Hint: The group G acts on N by conjugation.]

6. Suppose a group G has a subgroup H with $|G : H| = n < \infty$. Prove that G has a normal subgroup N with $N \subseteq H$ and $|G : N| \leq n!$.

7. Let G be a finite simple group containing an element of order 21. Show that every proper subgroup of G has index at least 10.

8. Show that if G is a group of order $392 = 2^3 \cdot 7^2$, then G has a normal subgroup of order 7 or a normal subgroup of order 49.

9. Let G be a group of order pqr, where $p > q > r$ are primes.
 (i) Show that if $p - 1$ is not divisible by q, then a Sylow p-subgroup of G must be normal.
 (ii) Let P be a Sylow p-subgroup of G and assume P is not normal in G. Show that a Sylow q-subgroup of G must be normal.

10. Let G be a group of order $p^3 - p$ where p is a prime. Prove that the number of Sylow p-subgroups is either 1 or $p + 1$.

11. Let G be a finite group and p a prime. Show that the intersection of all Sylow p-subgroups of G is a normal subgroup of G.

12. Let G be a finite group and p a prime. Let N be a normal subgroup of G and H a Sylow p-subgroup of G. Show that
 (i) HN/N is a Sylow p-subgroup of G/N, and
 (ii) $H \cap N$ is a Sylow p-subgroup of N.

13. Let P be a Sylow p-subgroup of a group G and let K be a subgroup of G containing $N_G(P)$. Show that $N_G(K) = K$.

14. Let G be a group with exactly 3 elements of order 2. Prove that G is not simple.
15. Assume H is a nontrivial subgroup of G such that $H \leq J$ for every non-trivial $J \leq G$. Prove that $H \leq Z(G)$.

16. Let G be a finite simple group having a subgroup H of prime index p. Prove that p is the largest prime divisor of $|G|$.

17. Let G be a group of order $2pq$, with p, q odd primes (not necessarily distinct). Prove that G is not simple.

18. Classify all groups of order $2012 = 2^2 \cdot 503$. [Hint: in one case, it may be helpful to know that the solutions of $x^4 \equiv 1 \pmod{503}$ are ±1.]