1 Lecture 2: Sequence, Series and power series (8/14/2012)

1.1 More on sequences

Example 1.1. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two bounded sequences. Show

$$\lim \sup_{n \to \infty} (x_n + y_n) \le \lim \sup_{n \to \infty} x_n + \lim \sup_{n \to \infty} y_n.$$

Proof. Since

$$\overline{x_n + y_n} = \sup\{x_m + y_m : m \ge n\}$$

$$\le \sup\{x_m : m \ge n\} + \sup\{y_m : m \ge n\}$$

$$= \overline{x_n} + \overline{y_n}$$

we have $\lim_{n\to\infty} \overline{x_n + y_n} \le \lim_{n\to\infty} (\overline{x_n} + \overline{y_n}) = \lim_{n\to\infty} \overline{x_n} + \lim_{n\to\infty} \overline{y_n}$.

Therefore, $\limsup_{n\to\infty} (x_n + y_n) \le \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.

Definition 1.1. Given a sequence $\{x_n\}_{n=1}^{\infty}$. We say that $\{x_{n_j}\}_{j=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$ if $n_1 < n_2 < \dots$

Example 1.2. If we consider $x_n = (-1)^n$, n = 1, 2, ..., then

- (i) $\{x_{2n}\}_{n=1}^{\infty}$ with $x_{2n} = 1$ is a subsequence of $\{x_n\}$.
- (ii) $\{x_{2n+1}\}_{n=1}^{\infty}$ with $x_{2n+1}=-1$ is another subsequence.

Although $\lim_{n\to\infty} x_n$ does not exist, $\lim_{n\to\infty} x_{2n} = 1$, and $\lim_{n\to\infty} x_{2n+1} = -1$.

Theorem 1.1. Let $\{x_n\}$ be a sequence in \mathbb{R} , then $\lim_{n\to\infty} x_n = x \iff$ for any subsequence $\{x_{n_k}\}_{k=1}^{\infty}$, one has $\lim_{k\to\infty} x_{n_k} = x$.

Proof. It is straight forward.

Proposition 1.1. Given bounded sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} , there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ s.t. $\limsup_{n\to\infty} x_n = \lim_{k\to\infty} x_{n_k}$.

Proof. The idea for the proof:

 $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \overline{x}_n \text{ where } \overline{x}_n = \sup\{x_n : m \ge n\}.$

Then $\bar{x}_k - 1/k$ is not an upper bound, one can choose n_k s.t. $\bar{x}_k \ge x_{n_k} > \bar{x}_k - 1/k$, inductively, we can choose $n_1 < n_2 < \cdots$. Then $\lim_{k \to \infty} x_{n_k} = \limsup x_n$.

Theorem 1.2. Bolzanno-Weierstrass Theorem:

Every bounded sequence in \mathbb{R} has a convergent subsequence

Proof. We consider two cases:

- (1) $\{x_n\}_{n=1}^{\infty}$ is finite: there must be 1 repeat ∞ many times. Then, there is a subsequence $\{x_{n_k}\}=x$.
- (2) $\{x_n\}_{n=1}^{\infty}$ is infinite. Then, we choose m, M such that $\{x_n\}_{n=1}^{\infty} \subset I_0 := [m, M]$, we choose a half of the interval from I_k and called I_{k+1} with I_{k+1} contains infinite set of $\{x_n\}_{n=1}^{\infty}$. Choose $\{x_{n_k}\}_{k=1}^{\infty}$ with $x_{n_k} \in I_k$. Then $|x_{n_k} x_{n_\ell}| \le \frac{2M}{2^k}$, $\ell > k$. So, $\{x_{n_k}\}$ is a Cauchy sequence, which has a limit.

Theorem 1.3. \mathbb{Q} is dense in \mathbb{R}

Because of the following theorem on the structure of real numbers:

Theorem 1.4. Every $x \in \mathbb{R}$ can be represented as $x = p + \sum_{j=1}^{\infty} \frac{a_j}{10^j}, a_j \in \{0, 1, ..., q\}, p \in \mathbb{Z}$. So, we then get 1 = 0.9999.... = 1.0.

1.2 Definition and basic test for a convergent series

Definition 1.2. We say that $\sum_{n=1}^{\infty} a_n$ converges (to a finite number $\in \mathbb{R}$), if $\lim_{n\to\infty} S_n$ exists, where $S_n = \sum_{k=1}^{\infty} a_k$.

• Question: How to test $\sum_{n=1}^{\infty} a_n$ converges or diverges ?

Proposition 1.2. (Necessary condition) If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$ as $n \to \infty$.

Proof. Notice that $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} S_{n+1} - S_n = S - S = 0$. The proof is complete. \square

Example 1.3. Prove $\sum_{n=1}^{\infty} \frac{(-1)^n + n}{n + 100}$ diverges.

Proof. Since
$$\lim_{n\to\infty}\frac{(-1)^n+n}{n+100}=1\neq 0$$
, we have that $\sum_{n=1}^{\infty}\frac{(-1)^n+n}{n+100}$ diverges.

Definition 1.3. We say that $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges.

Notice the $\sum_{n=1}^{\infty} a_n \Leftrightarrow \{S_n\}_{n=1}^{\infty}$ converges. One easily has

Theorem 1.5. (Cauchy criteria) The series $\sum_{n=1}^{\infty} a_n$ converges if and only if for $\epsilon > 0$, there is an N such that if $m > n \ge N$ then $\left|\sum_{k=n+1}^{m} a_k\right| < \epsilon$.

Corollary 1.6. $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges. The converse is not true

Note: First part is from: Cauchy test and $|\sum_{k=n}^m a_k| \le \sum_{k=n+1}^m |a_k|$. The second part is from

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converges, but it does not converges absolutely.

1.3 Series with non-negative general terms: $a_n \ge 0$

Theorem 1.7. (Comparison test) Assume $0 \le b_n \le a_n \le c_n$, n = 1, 2, ..., then

- (i) If $\sum_{n=1}^{\infty} c_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- (ii) If $\sum_{n=1}^{\infty} b_n$ diverges $(+\infty)$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 1.8. p-series

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges to $+\infty$ if $p \le 1$.

Proof. If p > 1, then

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \le 1 + \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^p} dx = 1 + \int_{1}^{\infty} \frac{1}{x^p} dx = 1 + \frac{1}{p-1} < \infty$$

If $p \leq 1$, then

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \ge \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^p} dx = 1 + \int_{1}^{\infty} \frac{1}{x^p} dx = \infty.$$

Example 1.4. Determine if $\sum_{n=1}^{\infty} \frac{(-1)^n + n^2}{n^4 + 10n + 1}$ converges.

Solution: Since

$$0 \le \frac{(-1)^n + n^2}{n^4 + 10n + 1} \le \frac{2n^2}{n^4} \le \frac{2}{n^2}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty$ (it is a p-series, with p=2), then by the comparison test, the series converges.

Theorem 1.9. (Integral test) Assume that f(x) is a decreasing non-negative function on $[1, \infty)$.

- (i) $0 \le a_n \le f(n)$ and $\int_1^\infty f(x)dx < +\infty$, then $\sum_{n=1}^\infty a_n$ converges;
- (ii) $a_n \ge f(n)$ and $\int_1^\infty f(x)dx = +\infty$, then $\sum_{n=1}^\infty a_n$ diverges.

Proof. (i) Since $a_{n+1} \leq f(n+1) \leq \int_n^{n+1} f(x) dx$, one has $\sum_{n=1}^{\infty} a_n \leq a_1 + \sum_{n=1}^{\infty} \int_n^{n+1} f(x) dx = a_1 + \int_1^{\infty} f(x) dx < +\infty$. Therefore, $\sum_{n=1}^{\infty} a_n$ converges.

(ii) Since $a_n \ge f(n)$, one has $\sum_{n=1}^{\infty} a_n \ge \sum_{n=1}^{\infty} \int_n^{n+1} f(x) dx = \int_1^{\infty} f(x) dx = +\infty$. Therefore, $\sum_{n=1}^{\infty} a_n$ diverges.

Example 1.5. $\sum_{n=1}^{\infty} \frac{1}{n(\ln(n+1))^p}$ converges if p > 1 and diverges if $p \le 1$.

Solution. Let $f_p(x) = \frac{1}{x(\log(x+1))^p}$. If $p \neq 1$, then

$$\int_{1}^{\infty} f(x)dx = \frac{1}{-p+1} \ln(x+1)^{p-1} \Big|_{x=1}^{\infty}$$

This is finite when p > 1, infinity when $p \leq 1$. Moreover, $a_n = f(n)$. The result follows from integral test.

Theorem 1.10. Ratio test for series with general term positive.

Let $a_n > 0$, n = 1, 2, ... and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$.

- (i) If r < 1, then $\sum_{n=1}^{\infty} a_n$ converges;
- (ii) If r > 1, hen $\sum_{n=1}^{\infty} a_n$ diverges;
- (iii) When r = 1, the test fails.

Example 1.6. Determine if $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges. Solution: $a_n = \frac{2^n}{n!} > 0$, $\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2}{n+1} \to 0$ as $n \to \infty$.

So, the series converges.

Example 1.7. Let $a_n = 1/n$ and $b_n = 1/n^2$. Then

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\frac{b_{n+1}}{b_n}=1.$$

But, $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ converges.

Theorem 1.11. Root test

If $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = r$, then:

- 1. if r < 1, then $\sum_{n=1}^{\infty} |a_n|$ converges.
- 2. if r > 1, $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. r = 1, test fails.

Example 1.8. Find interval x such that $\sum_{n=1}^{\infty} \frac{n^2}{8^n} x^{3n}$ converges.

Solution. Let $a_n = \frac{n^2}{8^n} x^{3n}$. Then

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{n^2}{8^n}}|x|^3 = \frac{|x|^3}{8}\sqrt[n]{n^2} \to \frac{|x|^3}{8} < 1, \quad when |x| < 2.$$

Therefore, the series converges for all $x \in (-2, 2)$.

• We have discussed how to test if a series with non-negative terms converges. In general, testing the convergence of $\sum_{n=1}^{\infty} a_n$ with general a_n is very difficult. The following identity is a very useful tool.

Theorem 1.12. Abel's Identity

$$\sum_{k=p}^{q} a_k b_k = \sum_{k=p}^{q} s_k (b_k - b_{k+1}) + s_q b_q - s_{p-1} b_p$$
where $s_k = \sum_{l=1}^{k} a_l$, $s_0 = 1$.

Proof. Notice that

$$\sum_{k=p}^{q} a_k b_k = \sum_{k=p}^{q} (s_k - s_{k-1}) b_k = \sum_{k=p}^{q-1} (s_k b_k - s_k b_{b+1}) + s_q b_q - s_{p-1} b_p = \sum_{k=p}^{q} s_k (b_k - b_{k+1}) + s_q b_q - s_{p-1} b_p.$$

The proof is complete.

Theorem 1.13. Test for alternating series

Let $\{b_k\}_{k=1}^{\infty}$ is a decreasing sequence and $\lim_{n\to\infty} b_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.

Proof. Apply Abel's identity with $a_n = (-1)^n$, $s_n = 0$ if n is even, -1 if n is odd.

Then the above theorem follows directly from the following more general theorem

Theorem 1.14. Let $\{a_k\}_{k=1}^{\infty}$ and $\{b_k\}_{k=1}^{\infty}$ be two sequences of numbers such that

- (i) $\{s_n = \sum_{k=1}^n a_k\}_{n=1}^{\infty} \text{ is bounded;}$
- (ii) $b_n \ge b_{n+1}$ for $n \ge 1$ and $b_n \to 0$ as $n \to \infty$.

Then $\sum_{k=1}^{\infty} a_k b_k$ converges.

Proof. For any $\epsilon > 0$, need to find N such that if m, n > N then $|\sum_{k=n}^m a_k b_k| < \epsilon$. Since $\{s_n\}_{n=1}^\infty$

is bounded, there is M > 0 such that $|s_n| \leq M$ for all $n \geq 1$, we have

$$\left| \sum_{k=n}^{m} a_k b_k \right| = \left| \sum_{k=n}^{m} s_k (b_k - b_{k+1}) + s_m b_m - s_{n-1} b_n \right|$$

$$\leq \sum_{k=n}^{m} |s_k| (b_k - b_{k+1}) + (|s_m| + |s_n|) (|b_m| + |b_n|)$$

$$\leq M(b_n - b_{m+1}) + 2M(|b_n| + |b_m|)$$

$$\leq 3M(|b_n| + |b_m|).$$

Since $\lim_{n\to\infty} b_n = 0$, there exists N such that if $n \geq N$, we have $|b_n| \leq \epsilon/6M$. Therefore, when $m>n\geq N$, we have $|\sum_{k=n}^m a_k b_k|\leq 6M\cdot\epsilon/6M=\epsilon$. Therefore, $\sum_{k=1}^\infty a_k b_k$ converges by the Cauchy criteria of convergence.

Example 1.9. Determine if $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ converges.

Solution. Since $\ln(n+2) \ge \ln(n+1)$, n = 1, 2, ..., then $\frac{1}{\ln(n+2)} \le \frac{1}{\ln(n+1)}$, n = 1, 2, and $\lim_{n\to\infty} \frac{1}{\ln(n+1)} = 0$. By the alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ converges.

Exercise: Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges.

1.4 Exercise

1. Prove the following series converges.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$

$$(b) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$$

- 2. Prove $\mathbb{Q} \times \mathbb{Q}$ is dense in \mathbb{R}^2 .
- 3. Investigate the behavior (convergence and divergence) of $\sum_{n=1}^{\infty} a_n$ if

(a)
$$a_n = \sqrt{n+1} - \sqrt{n}$$
; (b) $a_n = (\sqrt{n+1} - \sqrt{n})/n$; (c) $a_n = (n^{1/n} - 1)^n$ and

- (d) $a_n = \frac{1}{1+z^n}$, where z is complex number.
- 4. If $a_n \geq 0$ and $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges.
- 5. If $\sum_{n=1}^{\infty} a_n$ converges and in $\{b_n\}$ is monotonic and bounded, prove that $\sum_{n=1}^{\infty} a_n b_n$ converges.
- 6. Suppose that $a_n > 0$ and $\sum_{n=1}^{\infty} a_n = \infty$.

- (a) Prove that $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ diverges;
- (b) What can be said about

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + na_n}, \quad \sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n},$$

(c) Let $s_n = \sum_{k=1}^n a_k$. Prove

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

and deduce that $\sum_{n=1}^{\infty} \frac{a_n}{s_n^2}$ converges.

2 Lecture 2: Sequence, Series and power series (8/14/2012)

2.1 More on sequences

Example 2.1. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two bounded sequences. Show

$$\lim \sup_{n \to \infty} (x_n + y_n) \le \lim \sup_{n \to \infty} x_n + \lim \sup_{n \to \infty} y_n.$$

Proof. Since

$$\overline{x_n + y_n} = \sup\{x_m + y_m : m \ge n\}$$

$$\le \sup\{x_m : m \ge n\} + \sup\{y_m : m \ge n\}$$

$$= \overline{x_n} + \overline{y_n}$$

we have $\lim_{n\to\infty} \overline{x_n + y_n} \le \lim_{n\to\infty} (\overline{x_n} + \overline{y_n}) = \lim_{n\to\infty} \overline{x_n} + \lim_{n\to\infty} \overline{y_n}$.

Therefore, $\limsup_{n\to\infty} (x_n + y_n) \le \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.

Definition 2.1. Given a sequence $\{x_n\}_{n=1}^{\infty}$. We say that $\{x_{n_j}\}_{j=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$ if $n_1 < n_2 < \dots$

Example 2.2. If we consider $x_n = (-1)^n$, n = 1, 2, ..., then

(i) $\{x_{2n}\}_{n=1}^{\infty}$ with $x_{2n} = 1$ is a subsequence of $\{x_n\}$.

(ii) $\{x_{2n+1}\}_{n=1}^{\infty}$ with $x_{2n+1} = -1$ is another subsequence.

Although $\lim_{n\to\infty} x_n$ does not exist, $\lim_{n\to\infty} x_{2n} = 1$, and $\lim_{n\to\infty} x_{2n+1} = -1$.

Theorem 2.1. Let $\{x_n\}$ be a sequence in \mathbb{R} , then $\lim_{n\to\infty} x_n = x \iff$ for any subsequence $\{x_{n_k}\}_{k=1}^{\infty}$, one has $\lim_{k\to\infty} x_{n_k} = x$.

Proof. It is straight forward.

Proposition 2.1. Given bounded sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} , there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ s.t. $\limsup_{n\to\infty} x_n = \lim_{k\to\infty} x_{n_k}$.

Proof. The idea for the proof:

 $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \overline{x}_n \text{ where } \overline{x}_n = \sup\{x_n : m \ge n\}.$

Then $\bar{x}_k - 1/k$ is not an upper bound, one can choose n_k s.t. $\bar{x}_k \ge x_{n_k} > \bar{x}_k - 1/k$, inductively, we can choose $n_1 < n_2 < \cdots$. Then $\lim_{k \to \infty} x_{n_k} = \limsup x_n$.

Theorem 2.2. Bolzanno-Weierstrass Theorem:

Every bounded sequence in \mathbb{R} has a convergent subsequence

Proof. We consider two cases:

- (1) $\{x_n\}_{n=1}^{\infty}$ is finite: there must be 1 repeat ∞ many times. Then, there is a subsequence $\{x_{n_k}\}=x$.
- (2) $\{x_n\}_{n=1}^{\infty}$ is infinite. Then, we choose m, M such that $\{x_n\}_{n=1}^{\infty} \subset I_0 := [m, M]$, we choose a half of the interval from I_k and called I_{k+1} with I_{k+1} contains infinite set of $\{x_n\}_{n=1}^{\infty}$. Choose $\{x_{n_k}\}_{k=1}^{\infty}$ with $x_{n_k} \in I_k$. Then $|x_{n_k} x_{n_\ell}| \leq \frac{2M}{2^k}$, $\ell > k$. So, $\{x_{n_k}\}$ is a Cauchy sequence, which has a limit.

Theorem 2.3. \mathbb{Q} is dense in \mathbb{R}

Because of the following theorem on the structure of real numbers:

Theorem 2.4. Every $x \in \mathbb{R}$ can be represented as $x = p + \sum_{j=1}^{\infty} \frac{a_j}{10^j}, a_j \in \{0, 1, ..., q\}, p \in \mathbb{Z}$. So, we then get 1 = 0.9999.... = 1.0.

2.2 Definition and basic test for a convergent series

Definition 2.2. We say that $\sum_{n=1}^{\infty} a_n$ converges (to a finite number $\in \mathbb{R}$), if $\lim_{n\to\infty} S_n$ exists, where $S_n = \sum_{k=1}^{\infty} a_k$.

• Question: How to test $\sum_{n=1}^{\infty} a_n$ converges or diverges ?

Proposition 2.2. (Necessary condition) If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$ as $n \to \infty$.

Proof. Notice that $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} S_{n+1} - S_n = S - S = 0$. The proof is complete.

Example 2.3. Prove $\sum_{n=1}^{\infty} \frac{(-1)^n + n}{n + 100}$ diverges.

Proof. Since
$$\lim_{n\to\infty}\frac{(-1)^n+n}{n+100}=1\neq 0$$
, we have that $\sum_{n=1}^{\infty}\frac{(-1)^n+n}{n+100}$ diverges.

Definition 2.3. We say that $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges.

Notice the $\sum_{n=1}^{\infty} a_n \Leftrightarrow \{S_n\}_{n=1}^{\infty}$ converges. One easily has

Theorem 2.5. (Cauchy criteria) The series $\sum_{n=1}^{\infty} a_n$ converges if and only if for $\epsilon > 0$, there is an N such that if $m > n \ge N$ then $\left|\sum_{k=n+1}^{m} a_k\right| < \epsilon$.

Corollary 2.6. $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges. The converse is not true

Note: First part is from: Cauchy test and $|\sum_{k=n}^m a_k| \leq \sum_{k=n+1}^m |a_k|$. The second part is from

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converges, but it does not converges absolutely.

2.3 Series with non-negative general terms: $a_n \ge 0$

Theorem 2.7. (Comparison test) Assume $0 \le b_n \le a_n \le c_n$, n = 1, 2, ..., then

- (i) If $\sum_{n=1}^{\infty} c_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- (ii) If $\sum_{n=1}^{\infty} b_n$ diverges $(+\infty)$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 2.8. p-series

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges to $+\infty$ if $p \le 1$.

Proof. If p > 1, then

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \leq 1 + \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^p} dx = 1 + \int_{1}^{\infty} \frac{1}{x^p} dx = 1 + \frac{1}{p-1} < \infty$$

If $p \leq 1$, then

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \ge \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^p} dx = 1 + \int_{1}^{\infty} \frac{1}{x^p} dx = \infty.$$

Example 2.4. Determine if $\sum_{n=1}^{\infty} \frac{(-1)^n + n^2}{n^4 + 10n + 1}$ converges.

Solution: Since

$$0 \le \frac{(-1)^n + n^2}{n^4 + 10n + 1} \le \frac{2n^2}{n^4} \le \frac{2}{n^2}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty$ (it is a p-series, with p=2), then by the comparison test, the series converges.

Theorem 2.9. (Integral test) Assume that f(x) is a decreasing non-negative function on $[1, \infty)$.

- (i) $0 \le a_n \le f(n)$ and $\int_1^\infty f(x)dx < +\infty$, then $\sum_{n=1}^\infty a_n$ converges;
- (ii) $a_n \ge f(n)$ and $\int_1^\infty f(x)dx = +\infty$, then $\sum_{n=1}^\infty a_n$ diverges.

Proof. (i) Since $a_{n+1} \leq f(n+1) \leq \int_n^{n+1} f(x) dx$, one has $\sum_{n=1}^{\infty} a_n \leq a_1 + \sum_{n=1}^{\infty} \int_n^{n+1} f(x) dx = a_1 + \int_1^{\infty} f(x) dx < +\infty$. Therefore, $\sum_{n=1}^{\infty} a_n$ converges.

(ii) Since $a_n \ge f(n)$, one has $\sum_{n=1}^{\infty} a_n \ge \sum_{n=1}^{\infty} \int_n^{n+1} f(x) dx = \int_1^{\infty} f(x) dx = +\infty$. Therefore, $\sum_{n=1}^{\infty} a_n$ diverges.

Example 2.5. $\sum_{n=1}^{\infty} \frac{1}{n(\ln(n+1))^p}$ converges if p > 1 and diverges if $p \le 1$.

Solution. Let $f_p(x) = \frac{1}{x(\log(x+1))^p}$. If $p \neq 1$, then

$$\int_{1}^{\infty} f(x)dx = \frac{1}{-p+1} \ln(x+1)^{p-1} \Big|_{x=1}^{\infty}$$

This is finite when p > 1, infinity when $p \le 1$. Moreover, $a_n = f(n)$. The result follows from integral test.

Theorem 2.10. Ratio test for series with general term positive.

Let $a_n > 0$, n = 1, 2, ... and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$.

- (i) If r < 1, then $\sum_{n=1}^{\infty} a_n$ converges;
- (ii) If r > 1, hen $\sum_{n=1}^{\infty} a_n$ diverges;
- (iii) When r = 1, the test fails.

Example 2.6. Determine if $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges.

Solution:
$$a_n = \frac{2^n}{n!} > 0$$
, $\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2}{n+1} \to 0$ as $n \to \infty$.

So, the series converges.

Example 2.7. Let $a_n = 1/n$ and $b_n = 1/n^2$. Then

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{b_{n+1}}{b_n} = 1.$$

But, $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ converges.

Theorem 2.11. Root test

If $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = r$, then:

1. if r < 1, then $\sum_{n=1}^{\infty} |a_n|$ converges.

2. if r > 1, $\sum_{n=1}^{\infty} a_n$ diverges.

3. r = 1, test fails.

Example 2.8. Find interval x such that $\sum_{n=1}^{\infty} \frac{n^2}{8^n} x^{3n}$ converges.

Solution. Let $a_n = \frac{n^2}{8^n} x^{3n}$. Then

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{n^2}{8^n}}|x|^3 = \frac{|x|^3}{8}\sqrt[n]{n^2} \to \frac{|x|^3}{8} < 1, \text{ when } |x| < 2.$$

Therefore, the series converges for all $x \in (-2, 2)$.

• We have discussed how to test if a series with non-negative terms converges. In general, testing the convergence of $\sum_{n=1}^{\infty} a_n$ with general a_n is very difficult. The following identity is a very useful tool.

Theorem 2.12. Abel's Identity

$$\sum_{k=p}^{q} a_k b_k = \sum_{k=p}^{q} s_k (b_k - b_{k+1}) + s_q b_q - s_{p-1} b_p$$
where $s_k = \sum_{l=1}^{k} a_l$, $s_0 = 1$.

Proof. Notice that

$$\sum_{k=p}^{q} a_k b_k = \sum_{k=p}^{q} (s_k - s_{k-1}) b_k = \sum_{k=p}^{q-1} (s_k b_k - s_k b_{b+1}) + s_q b_q - s_{p-1} b_p = \sum_{k=p}^{q} s_k (b_k - b_{k+1}) + s_q b_q - s_{p-1} b_p.$$

The proof is complete. \Box

Theorem 2.13. Test for alternating series

Let $\{b_k\}_{k=1}^{\infty}$ is a decreasing sequence and $\lim_{n\to\infty} b_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.

Proof. Apply Abel's identity with $a_n = (-1)^n$, $s_n = 0$ if n is even, -1 if n is odd.

Then the above theorem follows directly from the following more general theorem \Box

Theorem 2.14. Let $\{a_k\}_{k=1}^{\infty}$ and $\{b_k\}_{k=1}^{\infty}$ be two sequences of numbers such that

(i)
$$\{s_n = \sum_{k=1}^n a_k\}_{n=1}^{\infty} \text{ is bounded;}$$

(ii)
$$b_n \ge b_{n+1}$$
 for $n \ge 1$ and $b_n \to 0$ as $n \to \infty$.

Then $\sum_{k=1}^{\infty} a_k b_k$ converges.

Proof. For any $\epsilon > 0$, need to find N such that if m, n > N then $\left| \sum_{k=n}^{m} a_k b_k \right| < \epsilon$. Since $\{s_n\}_{n=1}^{\infty}$ is bounded, there is M > 0 such that $|s_n| \leq M$ for all $n \geq 1$, we have

$$\left| \sum_{k=n}^{m} a_k b_k \right| = \left| \sum_{k=n}^{m} s_k (b_k - b_{k+1}) + s_m b_m - s_{n-1} b_n \right|$$

$$\leq \sum_{k=n}^{m} |s_k| (b_k - b_{k+1}) + (|s_m| + |s_n|) (|b_m| + |b_n|)$$

$$\leq M(b_n - b_{m+1}) + 2M(|b_n| + |b_m|)$$

$$\leq 3M(|b_n| + |b_m|).$$

Since $\lim_{n\to\infty} b_n = 0$, there exists N such that if $n \geq N$, we have $|b_n| \leq \epsilon/6M$. Therefore, when $m > n \geq N$, we have $|\sum_{k=n}^m a_k b_k| \leq 6M \cdot \epsilon/6M = \epsilon$. Therefore, $\sum_{k=1}^\infty a_k b_k$ converges by the Cauchy criteria of convergence.

Example 2.9. Determine if $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ converges.

Solution. Since $\ln(n+2) \ge \ln(n+1)$, n=1,2,..., then $\frac{1}{\ln(n+2)} \le \frac{1}{\ln(n+1)}$, n=1,2,... and $\lim_{n\to\infty} \frac{1}{\ln(n+1)} = 0$. By the alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ converges.

2.4 Exercise

- 1. Prove the following series converge.
 - (a) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$
 - (b) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[3]{n}}$
- 2. Prove $\mathbb{Q} \times \mathbb{Q}$ is dense in \mathbb{R}^2 .
- 3. Investigate the behavior (convergence and divergence) of $\sum_{n=1}^{\infty} a_n$ if

(a)
$$a_n = \sqrt{n+1} - \sqrt{n}$$
; (b) $a_n = (\sqrt{n+1} - \sqrt{n})/n$; (c) $a_n = (n^{1/n} - 1)^n$ and

- (d) $a_n = \frac{1}{1+z^n}$, where z is complex number.
- 4. If $a_n \geq 0$ and $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges.
- 5. If $\sum_{n=1}^{\infty} a_n$ converges and in $\{b_n\}$ is monotonic and bounded, prove that $\sum_{n=1}^{\infty} a_n b_n$ converges.

- 6. Suppose that $a_n > 0$ and $\sum_{n=1}^{\infty} a_n = \infty$.
 - (a) Prove that $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ diverges;
 - (b) What can be said about

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + na_n}, \quad \sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n},$$

(c) Let
$$s_n = \sum_{k=1}^n a_k$$
. Prove

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

and deduce that $\sum_{n=1}^{\infty} \frac{a_n}{s_n^2}$ converges.