Summer Jump-Start Program for Analysis, 2012 Song-Ying Li

1 Lecture 4: Set topology on metric spaces, 8/17/2012

Definition 1.1. Let (X,d) be a metric space; E is a subset of X. Then:

- (i) $x \in E$ is an interior point of E if there is a r > 0 s.t. $B(x, r) \subset E$. We let $int(E) = \{x \in E; x \text{ is an interior point of } E\}$.
- (ii) E is an open set if every point of E is an interior point, i.e. int(E) = E.
- (iii) $x \in E$ is an isolated point if there is r > 0 s.t. $B(x, r) \cap E = \{x\}$.
- (iv) $x \in X$ is a <u>limit point</u> of E if for any $\epsilon > 0$ there is $y \in B(x, \epsilon) \cap E$, $y \neq x$. Denote E' = all limit points of E.
- (v) E is a closed set if $E' \subset E$; $\overline{E} = E' \cup E = \text{ closure of } E$; $E \backslash E' \text{ contains all isolated points of } E$.
- (vi) E is a perfect set if E = E'.
- (vii) Exterior of E is defined as: $ext(E)=int(E^c)$
- (viii) Boundary of E is: $\partial E = E \setminus \operatorname{int}(E) \setminus \operatorname{ext}(E)$.
- (ix) E is a <u>compact set</u> in (X, d) if for every open cover for E, there is a finite subcover. In other word, If $\{U_{\alpha} : \alpha \in A\}$ is a family of open sets in X such that $E \subset \bigcup_{\alpha \in A} U_{\alpha}$, then there are finitely many U_{α_j} with $\alpha_1, \dots, \alpha_n \in A$ such that $E \subset \bigcup_{j=1}^n U_{\alpha_j}$.

- (x) $A, B \subset X$; A and B are separated if $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.
- (xi) $E \subset X$ is a <u>connected</u> set if there are no non-empty separated sets A and B s.t. $E = A \cup B$.

Theorem 1.1. (X, d) is a metric space:

- (i) B(x,r) is an open set.
- (ii) E is open if and only if E^c is closed.
- (iii) The union of any open set is open.
- (iv) Intersection of any closed sets is closed.

Example 1.1. Prove B(x,r) is an open set.

Proof. To prove B(x,r) is open, it suffices to prove: for any $y \in B(x,r)$ y is an interior point of B(x,r). Let $\epsilon = r - d(x,y) > 0$, we claim $B(y,\epsilon) \subset B(x,r)$. For any $z \in B(y,\epsilon)$, WTS d(z,x) < r. Since $d(z,x) \le d(z,y) + d(x,y) < \epsilon + d(x,y) = r - d(x,y) + d(x,y) = r$. Therefore, y is an interior point of B(x,r) and thus B(x,r) is open.

Example 1.2. Counterexamples for (iii) and (iv) in the previous theorem.

- (i) $E_n = (-\infty, 1 1/n]$ $n = 1, 2, \dots$ are closed, but $\bigcup_{n=1}^{\infty} E_n = (-\infty, 1)$ is not closed.
- (ii) $E_n = (-\infty, 1+1/n)$ n = 1, 2, ... are open, but $\cap E_n = (-\infty, 1]$ is not open.

Example 1.3.: Prove that in metric space (X, d), $E \subset X$, then the set of interior points in E, int(E), is an open set.

Proof.: To prove int(E) is open, it suffices to prove for any $x \in int(E)$, x is an interior point of int(E).

For any $x_0 \in \text{int}(E)$, there is r > 0 such that $B(x_0, r) \subset E$. Then $B(x_0, r) = \text{int}(B(x_0, r)) \subset \text{int}(E)$. Therefore, x_0 is an interior point of int(E). The proof is complete.

Example 1.4. Let $X = \mathbb{R}$ and $E = \mathbb{Q} \cap (0,1)$. Find

- (i) E' (all limit pts. of E),
- (ii) int(E) (all interior points of E).

Solution:

(i) We will show that E' = [0, 1].

Let $x \in (0,1]$, for any $\epsilon > 0$, WTS there is a $r \in E \setminus \{x\}$ s.t. $|r-x| < \epsilon$. Since \mathbb{Q} is dense in \mathbb{R} , there exists a $r \in ((x-\epsilon,x)\cap (x/2,x)\cap [0,1]\cap \mathbb{Q} \subset E$. By definition, $x \in E'$, Moreover, $0 = \lim_{n\to\infty} 1/n$, $1/n \in E$, so $0 \in E'$ and thus E' = [0,1].

(ii) We will show that $int(E) = \emptyset$.

For $x \in E$, WTS x is not an interior point in E, i.e. for r > 0, there is $y \notin E \cap (x - r, x + r)$. We choose $n \in \mathbb{N}$ with $n \geq 2(r+1)$, let $y = x + \frac{\sqrt{2}}{n}$. Then, $(y-r) = \sqrt{2}/n < r$ and $y \notin E$. Therefore, $x \notin \text{int}(E)$. So, $\text{int}(E) = \emptyset$.

1.1 Compact sets

1.1.1 Basic properties of compact sets

Recall that a set E of a metric space (X, d) is compact if each of its open covers of E has a finite subcover of E.

Theorem 1.2. (i) Every compact set must be closed;

(ii) Every closed subset of a compact set in a metric space is compact.

Proof. (i) E is a compact subset of (X,d). If E is not closed, then there is $x_0 \in E' \setminus E$. Choose a sequence $\{x_n\}_{n=1}^{\infty} \subset E$ such that $d(x_n, x_0) \leq d(x_{n-1}, x_0)/2$. Then $\{x_n\}_{n=1}^{\infty}$ is closed set in X. Notice that

$$E \subset (X \setminus \{x_n : n \in \mathbb{NN}\}) \cup_{n=1}^{\infty} B(x_n, \frac{d(x_n, x_0)}{4}).$$

Since $B(x_n, \frac{d(x_n, x_0)}{4}) \cap B(x_m, \frac{d(x_m, x_0)}{4}) = \emptyset$ if $m \neq n$. Therefore, there is no finite subcover for E. This is a contradiction with E is compact.

(ii) Let E is compact and F is closed subset of E. Then any open cover $\{O_{\alpha} : \alpha \in \Lambda\}$ for F, we have that $\{O_{\alpha} : \alpha \in \Lambda\} \cup \{X \setminus F\}$ is open cover of E. There is a finite subcover: $O_{\alpha_1}, \dots, O_{\alpha_k}, X \setminus F$ for E. Therefore, F has a finite subcover.

Example 1.5. E_n is compact, $E_n \neq 0$, $E_{n+1} \subset E_n$, n = 1, 2, ..., show $\bigcap_{n=1}^{\infty} E_n \neq \emptyset$.

Proof. If $\bigcap_{n=1}^{\infty} E_n = \emptyset$, then $X = (\bigcap_{n=1}^{\infty} E_n)^c = \bigcup_{n=1}^{\infty} E_n^c$. E_n is compact, then E_n is closed and E_n^c is open. $E_1 \subset X \subset \bigcup_{n=1}^{\infty} E_n^c$. Therefore, $\{E_n^c : n = 1, 2, ...\}$ is an open cover for E_1 and E_1 is

compact, there is finite subcover $\{E_{n_j}^c: j=1,...,k\}$ with $n_1 \leq n_2 \leq \cdots \leq n_k$. Thus

$$E_{n_k} \subset E_1 \subset \cup_{j=1}^k E_{n_j}^c \subset E_{n_k}^c$$

This is a contradiction. Therefore $\bigcap_{n=1}^{\infty} E_n \neq \emptyset$.

1.1.2 Compact set in \mathbb{R}^n

When $X = \mathbb{R}^n$, we have better structure for a compact set.

Theorem 1.3. Any cell $I_n = [a_1, b_1] \times \times [a_n, b_n]$ is a compact set of \mathbb{R}^n

Proof. We prove the case n = 1. The proof is similar when n > 1. Let $\{O_{\alpha}, \alpha \in \Lambda\}$ be any open cover of I = [a, b]. Suppose that there is no finite sub cover for I, we try to get a contradiction. By the assumption, either $[a, \frac{a+b}{2}]$ or $[\frac{a+b}{2}, b]$ has no finite subcover. We denote the one which has no finite sub cover as $[a_1, b_1]$. Therefore,

$$a \le a_1 \le b_1 \le b;$$
 $b_1 - a_1 = \frac{b - a}{2}$

We divide interval $I^1 = [a_1, b_1]$ into two intervals $[a_1, \frac{a_1+b_1}{2}]$ and $[\frac{a_1+b_1}{2}, b_1]$. We conclude that one of them con not be covered by finite elements in $\{O_{\alpha}, \alpha \in \Lambda\}$. We denote the interval as $[a_2, b_2]$. Keeping the process, we will have $I^k = [a_k, b_k]$ which can not be covered by finite elements in $\{O_{\alpha}, \alpha \in \Lambda\}$ and satisfy the following property:

$$a_{k-1} \le a_k \le b_k \le b_{k-1}; \quad b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b - a}{2^k}, \quad a_0 = a, b_0 = b, \quad k = 1, \dots$$

It is clear that $\{a_k\}_{k=1}^{\infty}$ and $\{b_k\}_{k=1}^{\infty}$ are convergent sequences, they converge to the same point $x_0 \in I = [a, b]$. Therefore, there is a O_{α} with some $\alpha \in \Lambda$ such that $x_0 \in O_{\alpha}$. Since O_{α} is open, there is $\epsilon > 0$ such that $x_0 - \epsilon, x_0 + \epsilon) \subset O_{\alpha}$. When $2^{-k} < \epsilon$, we have that $I^k \subset (x_0 - \epsilon, x_0 + \epsilon) \subset O_{\alpha}$. This contradicts with I^k can not be covered by finite elements in $\{O_{\alpha} : \alpha \in \Lambda\}$. Therefore, I = [a, b] is compact.

Corollary 1.4. (Contractive net cell theorem) If ... $I_m \subset ... \subset I_1 \subset I$ and $dia(I_m) \to 0$ as $m \to \infty$, then $\bigcap_{m=1}^{\infty} I_m = \{x_0\}$.

Remark 1.1. If I_m is not compact, the theorem may fail.

Example 1.6.

- (i) $E_n = (0, 1/n)$ and $E_{n+1} \subset E_n$, but $\bigcap_{n=1}^{\infty} E_n = \emptyset$.
- (ii) $E_n = [n, \infty)$ closed and $E_{n+1} \subset E_n$, but $\bigcap_{n=1}^{\infty} E_n = \emptyset$.

Theorem 1.5. Heine-Borel Theorem

Let $E \subset \mathbb{R}^n$. Then E is compact \iff E is bounded and closed.

Proof. A brief proof: Notice that

$$E = \cup \{B(x,1) : x \in E\}$$

Then E is compact, it must be bounded and closed. Conversely, since E is bounded in \mathbb{R}^n , there is M > 0 such that

$$E \subset [-M, M]^n$$
.

Notice that $[-M, M]^n$ is compact and E is closed, so E is compact.

Theorem 1.6. (Weierstrass theorem) Every bounded infinite subset E of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Proof. Since E is bounded, there is M > 0 such that $E \subset I = [-M, M]^n$. Using the idea of the proof of Theorem 4.2, one can construct cells I^k such that

- i) $I^k \subset I^{k-1}$, $I_0 = I$, $k = 1, 2, 3, \dots$;
- ii) $\mathrm{dia}(I^k) \leq \sqrt{n}2M$
- iii) Each I^k contains infinite many points of E.

Then $\{x_0\} = \cap I^k$ which is a limit point of E.

1.2 Connected and convex sets

Let (X, d) ne a metric space. Then E is connected if $E \neq A \cup B$ with $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$, $A \cap \bar{B} = \emptyset$. An empty connected set in \mathbb{R} is very simple:

Theorem 1.7. A connected set E in \mathbb{R} must be an interval (i.e. $x_1, x_2 \in E_1$, $x_1 < x_2$ such that $(x_1, x_2) \subset E \subset [x_1, x_2] \subset E$).

Proof. Suppose the theorem is not true: there are two points $x, y \in E$, x < y but there is $z \neq E$ and x < z < y. We try to get a contradiction.

Let $A = (-\infty, z) \cap E$ and $B = (z, \infty) \cap E$. Then $E = A \cup B$. Moreover, $\bar{A} \subset (-\infty, z] \cap \bar{E}$ and $\bar{B} \subset [z, \infty) \cap \bar{E}$. Thus, $\bar{A} \cap B = \emptyset$ and $A \cap B = \emptyset$.

Since $x \in A$, $y \in B$, one has A, B are not empty separated sets in \mathbb{R} and $E = A \cup B$. Therefore, E is not connected. This is a contradiction.

Definition 1.2. (i) For any $x, y \in \mathbb{R}^n$, we define a line segment $[x, y] = \{\lambda x + (1 - \lambda)y : \lambda = [0, 1]\}.$

(ii) $E \subset \mathbb{R}^n$ is convex if $[x, y] \subset E$ for all $x, y \in E$.

Example 1.7. (i) B(0,r) and any cells in \mathbb{R}^n are convex;

(ii) If $D_1, ..., D_m$ are convex in \mathbb{R}^n , then $D_1 \times D_2 \times ... \times D_n$ is convex in $\mathbb{R}^{n \times m}$.

1.3 Exercise

1. Let E be a nonempty subset of a metric space X, define the distance from $x \in X$ to E by

$$\rho_E(x) = \inf\{d(x, y) : y \in E\}.$$

- (a) Prove that $\rho_E(x) = 0$ if and only if $x \in \overline{E}$;
- (b) Prove that ρ_E is uniformly continuous function on X, by showing that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y), \quad x, y \in X.$$

2. Let $x \in \mathbb{R}^n$. Prove the unit ball B(x,r) centered at x with radius r is a convex set

- 3. Prove the polydisc $D(0, r_1) \times D(0, r_2) \times \cdots \times D(0, r_n)$ is a convex set in \mathbb{R}^n , where $D(0, r_j)$ is the disc in \mathbb{R}^2 .
- 4. Prove the set of irrational number is uncountable.
- 5. Let L_n be a line in \mathbb{R}^2 for $n = 1, 2, 3, \dots$ Prove $\bigcup_{n=1}^{\infty} L_n \neq \mathbb{R}^2$.
- 6. Construct a set of real numbers which has exactly three limit points.
- 7. Let A_1, \dots, A_n, \dots be subsets of a metric space X. Prove
 - (a) If $B_n = \bigcup_{k=1}^n A_k$ then $\overline{B_n} = \bigcup_{k=1}^n \overline{A_n}$;
- (b) If $B = \bigcup_{k=1}^{\infty} A_k$ then $\bigcup_{k=1}^{\infty} \overline{A}_k \subset \overline{B}$. Give an example showing that $\bigcup_{k=1}^{\infty} \overline{A}_k$ is proper subset of \overline{B} .
- 8. Let $E=\mathbb{Q}$ the set of the rational numbers. Find
 - (a) the set of all interior point of E, (b) the set of all limit points of E; (c) boundary of E.
- 9. For $x, y \in \mathbb{R}$, define:

$$d_1(x,y) = (x-y)^2$$
, $d_2(x,y) = \sqrt{|x-y|}$, $d_3(x,y) = |x^2 - y^2|$, $d_4(x,y) = |x-2y|$

and $d_5(x,y) = \frac{|x-y|}{1+|x-y|}$. Determine, for each of these, whether it is a metric or not.

10. Let $K = \{1/n, n \in \mathbb{N}\} \cup \{0\}$. Prove K is compact subset of \mathbb{R} .